add files

This commit is contained in:
烨玮
2025-02-20 12:17:03 +08:00
parent a21dd4555c
commit edd008441b
667 changed files with 473123 additions and 0 deletions

View File

@@ -0,0 +1,38 @@
import torch
from torch.nn import functional as F
class DotScorer(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(
self,
xs_pad: torch.Tensor,
spk_emb: torch.Tensor,
):
# xs_pad: B, T, D
# spk_emb: B, N, D
scores = torch.matmul(xs_pad, spk_emb.transpose(1, 2))
return scores
def convert_tf2torch(self, var_dict_tf, var_dict_torch):
return {}
class CosScorer(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(
self,
xs_pad: torch.Tensor,
spk_emb: torch.Tensor,
):
# xs_pad: B, T, D
# spk_emb: B, N, D
scores = F.cosine_similarity(xs_pad.unsqueeze(2), spk_emb.unsqueeze(1), dim=-1)
return scores
def convert_tf2torch(self, var_dict_tf, var_dict_torch):
return {}

View File

@@ -0,0 +1,277 @@
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
from typeguard import check_argument_types
import numpy as np
from funasr_local.modules.nets_utils import make_pad_mask
from funasr_local.modules.layer_norm import LayerNorm
from funasr_local.models.encoder.abs_encoder import AbsEncoder
import math
from funasr_local.modules.repeat import repeat
class EncoderLayer(nn.Module):
def __init__(
self,
input_units,
num_units,
kernel_size=3,
activation="tanh",
stride=1,
include_batch_norm=False,
residual=False
):
super().__init__()
left_padding = math.ceil((kernel_size - stride) / 2)
right_padding = kernel_size - stride - left_padding
self.conv_padding = nn.ConstantPad1d((left_padding, right_padding), 0.0)
self.conv1d = nn.Conv1d(
input_units,
num_units,
kernel_size,
stride,
)
self.activation = self.get_activation(activation)
if include_batch_norm:
self.bn = nn.BatchNorm1d(num_units, momentum=0.99, eps=1e-3)
self.residual = residual
self.include_batch_norm = include_batch_norm
self.input_units = input_units
self.num_units = num_units
self.stride = stride
@staticmethod
def get_activation(activation):
if activation == "tanh":
return nn.Tanh()
else:
return nn.ReLU()
def forward(self, xs_pad, ilens=None):
outputs = self.conv1d(self.conv_padding(xs_pad))
if self.residual and self.stride == 1 and self.input_units == self.num_units:
outputs = outputs + xs_pad
if self.include_batch_norm:
outputs = self.bn(outputs)
# add parenthesis for repeat module
return self.activation(outputs), ilens
class ConvEncoder(AbsEncoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Convolution encoder in OpenNMT framework
"""
def __init__(
self,
num_layers,
input_units,
num_units,
kernel_size=3,
dropout_rate=0.3,
position_encoder=None,
activation='tanh',
auxiliary_states=True,
out_units=None,
out_norm=False,
out_residual=False,
include_batchnorm=False,
regularization_weight=0.0,
stride=1,
tf2torch_tensor_name_prefix_torch: str = "speaker_encoder",
tf2torch_tensor_name_prefix_tf: str = "EAND/speaker_encoder",
):
assert check_argument_types()
super().__init__()
self._output_size = num_units
self.num_layers = num_layers
self.input_units = input_units
self.num_units = num_units
self.kernel_size = kernel_size
self.dropout_rate = dropout_rate
self.position_encoder = position_encoder
self.out_units = out_units
self.auxiliary_states = auxiliary_states
self.out_norm = out_norm
self.activation = activation
self.out_residual = out_residual
self.include_batch_norm = include_batchnorm
self.regularization_weight = regularization_weight
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
if isinstance(stride, int):
self.stride = [stride] * self.num_layers
else:
self.stride = stride
self.downsample_rate = 1
for s in self.stride:
self.downsample_rate *= s
self.dropout = nn.Dropout(dropout_rate)
self.cnn_a = repeat(
self.num_layers,
lambda lnum: EncoderLayer(
input_units if lnum == 0 else num_units,
num_units,
kernel_size,
activation,
self.stride[lnum],
include_batchnorm,
residual=True if lnum > 0 else False
)
)
if self.out_units is not None:
left_padding = math.ceil((kernel_size - stride) / 2)
right_padding = kernel_size - stride - left_padding
self.out_padding = nn.ConstantPad1d((left_padding, right_padding), 0.0)
self.conv_out = nn.Conv1d(
num_units,
out_units,
kernel_size,
)
if self.out_norm:
self.after_norm = LayerNorm(out_units)
def output_size(self) -> int:
return self.num_units
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
inputs = xs_pad
if self.position_encoder is not None:
inputs = self.position_encoder(inputs)
if self.dropout_rate > 0:
inputs = self.dropout(inputs)
outputs, _ = self.cnn_a(inputs.transpose(1, 2), ilens)
if self.out_units is not None:
outputs = self.conv_out(self.out_padding(outputs))
outputs = outputs.transpose(1, 2)
if self.out_norm:
outputs = self.after_norm(outputs)
if self.out_residual:
outputs = outputs + inputs
return outputs, ilens, None
def gen_tf2torch_map_dict(self):
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
map_dict_local = {
# torch: conv1d.weight in "out_channel in_channel kernel_size"
# tf : conv1d.weight in "kernel_size in_channel out_channel"
# torch: linear.weight in "out_channel in_channel"
# tf : dense.weight in "in_channel out_channel"
"{}.cnn_a.0.conv1d.weight".format(tensor_name_prefix_torch):
{"name": "{}/cnn_a/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
"{}.cnn_a.0.conv1d.bias".format(tensor_name_prefix_torch):
{"name": "{}/cnn_a/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.cnn_a.layeridx.conv1d.weight".format(tensor_name_prefix_torch):
{"name": "{}/cnn_a/conv1d_layeridx/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
"{}.cnn_a.layeridx.conv1d.bias".format(tensor_name_prefix_torch):
{"name": "{}/cnn_a/conv1d_layeridx/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
}
if self.out_units is not None:
# add output layer
map_dict_local.update({
"{}.conv_out.weight".format(tensor_name_prefix_torch):
{"name": "{}/cnn_a/conv1d_{}/kernel".format(tensor_name_prefix_tf, self.num_layers),
"squeeze": None,
"transpose": (2, 1, 0),
}, # tf: (1, 256, 256) -> torch: (256, 256, 1)
"{}.conv_out.bias".format(tensor_name_prefix_torch):
{"name": "{}/cnn_a/conv1d_{}/bias".format(tensor_name_prefix_tf, self.num_layers),
"squeeze": None,
"transpose": None,
}, # tf: (256,) -> torch: (256,)
})
return map_dict_local
def convert_tf2torch(self,
var_dict_tf,
var_dict_torch,
):
map_dict = self.gen_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
# process special (first and last) layers
if name in map_dict:
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
assert var_dict_torch[name].size() == data_tf.size(), \
"{}, {}, {} != {}".format(name, name_tf,
var_dict_torch[name].size(), data_tf.size())
var_dict_torch_update[name] = data_tf
logging.info("torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
))
# process general layers
else:
# self.tf2torch_tensor_name_prefix_torch may include ".", solve this case
names = name.replace(self.tf2torch_tensor_name_prefix_torch, "todo").split('.')
layeridx = int(names[2])
name_q = name.replace(".{}.".format(layeridx), ".layeridx.")
if name_q in map_dict.keys():
name_v = map_dict[name_q]["name"]
name_tf = name_v.replace("layeridx", "{}".format(layeridx))
data_tf = var_dict_tf[name_tf]
if map_dict[name_q]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name_q]["squeeze"])
if map_dict[name_q]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name_q]["transpose"])
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
assert var_dict_torch[name].size() == data_tf.size(), \
"{}, {}, {} != {}".format(name, name_tf,
var_dict_torch[name].size(), data_tf.size())
var_dict_torch_update[name] = data_tf
logging.info("torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
))
else:
logging.warning("{} is missed from tf checkpoint".format(name))
return var_dict_torch_update

View File

@@ -0,0 +1,335 @@
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
from typeguard import check_argument_types
import numpy as np
from funasr_local.modules.nets_utils import make_pad_mask
from funasr_local.modules.layer_norm import LayerNorm
from funasr_local.models.encoder.abs_encoder import AbsEncoder
import math
from funasr_local.modules.repeat import repeat
from funasr_local.modules.multi_layer_conv import FsmnFeedForward
class FsmnBlock(torch.nn.Module):
def __init__(
self,
n_feat,
dropout_rate,
kernel_size,
fsmn_shift=0,
):
super().__init__()
self.dropout = nn.Dropout(p=dropout_rate)
self.fsmn_block = nn.Conv1d(n_feat, n_feat, kernel_size, stride=1,
padding=0, groups=n_feat, bias=False)
# padding
left_padding = (kernel_size - 1) // 2
if fsmn_shift > 0:
left_padding = left_padding + fsmn_shift
right_padding = kernel_size - 1 - left_padding
self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0)
def forward(self, inputs, mask, mask_shfit_chunk=None):
b, t, d = inputs.size()
if mask is not None:
mask = torch.reshape(mask, (b, -1, 1))
if mask_shfit_chunk is not None:
mask = mask * mask_shfit_chunk
inputs = inputs * mask
x = inputs.transpose(1, 2)
x = self.pad_fn(x)
x = self.fsmn_block(x)
x = x.transpose(1, 2)
x = x + inputs
x = self.dropout(x)
return x * mask
class EncoderLayer(torch.nn.Module):
def __init__(
self,
in_size,
size,
feed_forward,
fsmn_block,
dropout_rate=0.0
):
super().__init__()
self.in_size = in_size
self.size = size
self.ffn = feed_forward
self.memory = fsmn_block
self.dropout = nn.Dropout(dropout_rate)
def forward(
self,
xs_pad: torch.Tensor,
mask: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# xs_pad in Batch, Time, Dim
context = self.ffn(xs_pad)[0]
memory = self.memory(context, mask)
memory = self.dropout(memory)
if self.in_size == self.size:
return memory + xs_pad, mask
return memory, mask
class FsmnEncoder(AbsEncoder):
"""Encoder using Fsmn
"""
def __init__(self,
in_units,
filter_size,
fsmn_num_layers,
dnn_num_layers,
num_memory_units=512,
ffn_inner_dim=2048,
dropout_rate=0.0,
shift=0,
position_encoder=None,
sample_rate=1,
out_units=None,
tf2torch_tensor_name_prefix_torch="post_net",
tf2torch_tensor_name_prefix_tf="EAND/post_net"
):
"""Initializes the parameters of the encoder.
Args:
filter_size: the total order of memory block
fsmn_num_layers: The number of fsmn layers.
dnn_num_layers: The number of dnn layers
num_units: The number of memory units.
ffn_inner_dim: The number of units of the inner linear transformation
in the feed forward layer.
dropout_rate: The probability to drop units from the outputs.
shift: left padding, to control delay
position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to
apply on inputs or ``None``.
"""
super(FsmnEncoder, self).__init__()
self.in_units = in_units
self.filter_size = filter_size
self.fsmn_num_layers = fsmn_num_layers
self.dnn_num_layers = dnn_num_layers
self.num_memory_units = num_memory_units
self.ffn_inner_dim = ffn_inner_dim
self.dropout_rate = dropout_rate
self.shift = shift
if not isinstance(shift, list):
self.shift = [shift for _ in range(self.fsmn_num_layers)]
self.sample_rate = sample_rate
if not isinstance(sample_rate, list):
self.sample_rate = [sample_rate for _ in range(self.fsmn_num_layers)]
self.position_encoder = position_encoder
self.dropout = nn.Dropout(dropout_rate)
self.out_units = out_units
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.fsmn_layers = repeat(
self.fsmn_num_layers,
lambda lnum: EncoderLayer(
in_units if lnum == 0 else num_memory_units,
num_memory_units,
FsmnFeedForward(
in_units if lnum == 0 else num_memory_units,
ffn_inner_dim,
num_memory_units,
1,
dropout_rate
),
FsmnBlock(
num_memory_units,
dropout_rate,
filter_size,
self.shift[lnum]
)
),
)
self.dnn_layers = repeat(
dnn_num_layers,
lambda lnum: FsmnFeedForward(
num_memory_units,
ffn_inner_dim,
num_memory_units,
1,
dropout_rate,
)
)
if out_units is not None:
self.conv1d = nn.Conv1d(num_memory_units, out_units, 1, 1)
def output_size(self) -> int:
return self.num_memory_units
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
inputs = xs_pad
if self.position_encoder is not None:
inputs = self.position_encoder(inputs)
inputs = self.dropout(inputs)
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
inputs = self.fsmn_layers(inputs, masks)[0]
inputs = self.dnn_layers(inputs)[0]
if self.out_units is not None:
inputs = self.conv1d(inputs.transpose(1, 2)).transpose(1, 2)
return inputs, ilens, None
def gen_tf2torch_map_dict(self):
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
map_dict_local = {
# torch: conv1d.weight in "out_channel in_channel kernel_size"
# tf : conv1d.weight in "kernel_size in_channel out_channel"
# torch: linear.weight in "out_channel in_channel"
# tf : dense.weight in "in_channel out_channel"
# for fsmn_layers
"{}.fsmn_layers.layeridx.ffn.norm.bias".format(tensor_name_prefix_torch):
{"name": "{}/fsmn_layer_layeridx/ffn/LayerNorm/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.fsmn_layers.layeridx.ffn.norm.weight".format(tensor_name_prefix_torch):
{"name": "{}/fsmn_layer_layeridx/ffn/LayerNorm/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.fsmn_layers.layeridx.ffn.w_1.bias".format(tensor_name_prefix_torch):
{"name": "{}/fsmn_layer_layeridx/ffn/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.fsmn_layers.layeridx.ffn.w_1.weight".format(tensor_name_prefix_torch):
{"name": "{}/fsmn_layer_layeridx/ffn/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
"{}.fsmn_layers.layeridx.ffn.w_2.weight".format(tensor_name_prefix_torch):
{"name": "{}/fsmn_layer_layeridx/ffn/conv1d_1/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
"{}.fsmn_layers.layeridx.memory.fsmn_block.weight".format(tensor_name_prefix_torch):
{"name": "{}/fsmn_layer_layeridx/memory/depth_conv_w".format(tensor_name_prefix_tf),
"squeeze": 0,
"transpose": (1, 2, 0),
}, # (1, 31, 512, 1) -> (31, 512, 1) -> (512, 1, 31)
# for dnn_layers
"{}.dnn_layers.layeridx.norm.bias".format(tensor_name_prefix_torch):
{"name": "{}/dnn_layer_layeridx/LayerNorm/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.dnn_layers.layeridx.norm.weight".format(tensor_name_prefix_torch):
{"name": "{}/dnn_layer_layeridx/LayerNorm/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.dnn_layers.layeridx.w_1.bias".format(tensor_name_prefix_torch):
{"name": "{}/dnn_layer_layeridx/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.dnn_layers.layeridx.w_1.weight".format(tensor_name_prefix_torch):
{"name": "{}/dnn_layer_layeridx/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
"{}.dnn_layers.layeridx.w_2.weight".format(tensor_name_prefix_torch):
{"name": "{}/dnn_layer_layeridx/conv1d_1/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
}
if self.out_units is not None:
# add output layer
map_dict_local.update({
"{}.conv1d.weight".format(tensor_name_prefix_torch):
{"name": "{}/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
"{}.conv1d.bias".format(tensor_name_prefix_torch):
{"name": "{}/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
})
return map_dict_local
def convert_tf2torch(self,
var_dict_tf,
var_dict_torch,
):
map_dict = self.gen_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
# process special (first and last) layers
if name in map_dict:
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
assert var_dict_torch[name].size() == data_tf.size(), \
"{}, {}, {} != {}".format(name, name_tf,
var_dict_torch[name].size(), data_tf.size())
var_dict_torch_update[name] = data_tf
logging.info("torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
))
# process general layers
else:
# self.tf2torch_tensor_name_prefix_torch may include ".", solve this case
names = name.replace(self.tf2torch_tensor_name_prefix_torch, "todo").split('.')
layeridx = int(names[2])
name_q = name.replace(".{}.".format(layeridx), ".layeridx.")
if name_q in map_dict.keys():
name_v = map_dict[name_q]["name"]
name_tf = name_v.replace("layeridx", "{}".format(layeridx))
data_tf = var_dict_tf[name_tf]
if map_dict[name_q]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name_q]["squeeze"])
if map_dict[name_q]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name_q]["transpose"])
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
assert var_dict_torch[name].size() == data_tf.size(), \
"{}, {}, {} != {}".format(name, name_tf,
var_dict_torch[name].size(), data_tf.size())
var_dict_torch_update[name] = data_tf
logging.info("torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
))
else:
logging.warning("{} is missed from tf checkpoint".format(name))
return var_dict_torch_update

View File

@@ -0,0 +1,480 @@
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import logging
import torch
import torch.nn as nn
from funasr_local.modules.streaming_utils.chunk_utilis import overlap_chunk
from typeguard import check_argument_types
import numpy as np
from funasr_local.modules.nets_utils import make_pad_mask
from funasr_local.modules.attention import MultiHeadSelfAttention, MultiHeadedAttentionSANM
from funasr_local.modules.embedding import SinusoidalPositionEncoder
from funasr_local.modules.layer_norm import LayerNorm
from funasr_local.modules.multi_layer_conv import Conv1dLinear
from funasr_local.modules.multi_layer_conv import MultiLayeredConv1d
from funasr_local.modules.positionwise_feed_forward import (
PositionwiseFeedForward, # noqa: H301
)
from funasr_local.modules.repeat import repeat
from funasr_local.modules.subsampling import Conv2dSubsampling
from funasr_local.modules.subsampling import Conv2dSubsampling2
from funasr_local.modules.subsampling import Conv2dSubsampling6
from funasr_local.modules.subsampling import Conv2dSubsampling8
from funasr_local.modules.subsampling import TooShortUttError
from funasr_local.modules.subsampling import check_short_utt
from funasr_local.models.ctc import CTC
from funasr_local.models.encoder.abs_encoder import AbsEncoder
class EncoderLayer(nn.Module):
def __init__(
self,
in_size,
size,
self_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
stochastic_depth_rate=0.0,
):
"""Construct an EncoderLayer object."""
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(in_size)
self.norm2 = LayerNorm(size)
self.dropout = nn.Dropout(dropout_rate)
self.in_size = in_size
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
self.stochastic_depth_rate = stochastic_depth_rate
self.dropout_rate = dropout_rate
def forward(self, x, mask, cache=None, mask_att_chunk_encoder=None):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
skip_layer = False
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
stoch_layer_coeff = 1.0
if self.training and self.stochastic_depth_rate > 0:
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
if skip_layer:
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, mask
residual = x
if self.normalize_before:
x = self.norm1(x)
if self.concat_after:
x_concat = torch.cat((x, self.self_attn(x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder)), dim=-1)
if self.in_size == self.size:
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
else:
x = stoch_layer_coeff * self.concat_linear(x_concat)
else:
if self.in_size == self.size:
x = residual + stoch_layer_coeff * self.dropout(
self.self_attn(x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder)
)
else:
x = stoch_layer_coeff * self.dropout(
self.self_attn(x, mask, mask_att_chunk_encoder=mask_att_chunk_encoder)
)
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm2(x)
return x, mask, cache, mask_att_chunk_encoder
class SelfAttentionEncoder(AbsEncoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Self attention encoder in OpenNMT framework
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: Optional[str] = "conv2d",
pos_enc_class=SinusoidalPositionEncoder,
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 1,
padding_idx: int = -1,
interctc_layer_idx: List[int] = [],
interctc_use_conditioning: bool = False,
tf2torch_tensor_name_prefix_torch: str = "encoder",
tf2torch_tensor_name_prefix_tf: str = "seq2seq/encoder",
out_units=None,
):
assert check_argument_types()
super().__init__()
self._output_size = output_size
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate)
elif input_layer == "conv2d2":
self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
SinusoidalPositionEncoder(),
)
elif input_layer is None:
if input_size == output_size:
self.embed = None
else:
self.embed = torch.nn.Linear(input_size, output_size)
elif input_layer == "pe":
self.embed = SinusoidalPositionEncoder()
elif input_layer == "null":
self.embed = None
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
else:
raise NotImplementedError("Support only linear or conv1d.")
self.encoders = repeat(
num_blocks,
lambda lnum: EncoderLayer(
output_size,
output_size,
MultiHeadSelfAttention(
attention_heads,
output_size,
output_size,
attention_dropout_rate,
),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after,
) if lnum > 0 else EncoderLayer(
input_size,
output_size,
MultiHeadSelfAttention(
attention_heads,
input_size if input_layer == "pe" or input_layer == "null" else output_size,
output_size,
attention_dropout_rate,
),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after,
),
)
if self.normalize_before:
self.after_norm = LayerNorm(output_size)
self.interctc_layer_idx = interctc_layer_idx
if len(interctc_layer_idx) > 0:
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
self.interctc_use_conditioning = interctc_use_conditioning
self.conditioning_layer = None
self.dropout = nn.Dropout(dropout_rate)
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
self.out_units = out_units
if out_units is not None:
self.output_linear = nn.Linear(output_size, out_units)
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
ctc: CTC = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Embed positions in tensor.
Args:
xs_pad: input tensor (B, L, D)
ilens: input length (B)
prev_states: Not to be used now.
Returns:
position embedded tensor and mask
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
xs_pad = xs_pad * self.output_size()**0.5
if self.embed is None:
xs_pad = xs_pad
elif (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling2)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
else:
xs_pad = self.embed(xs_pad)
xs_pad = self.dropout(xs_pad)
# encoder_outs = self.encoders0(xs_pad, masks)
# xs_pad, masks = encoder_outs[0], encoder_outs[1]
intermediate_outs = []
if len(self.interctc_layer_idx) == 0:
encoder_outs = self.encoders(xs_pad, masks)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
else:
for layer_idx, encoder_layer in enumerate(self.encoders):
encoder_outs = encoder_layer(xs_pad, masks)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
if layer_idx + 1 in self.interctc_layer_idx:
encoder_out = xs_pad
# intermediate outputs are also normalized
if self.normalize_before:
encoder_out = self.after_norm(encoder_out)
intermediate_outs.append((layer_idx + 1, encoder_out))
if self.interctc_use_conditioning:
ctc_out = ctc.softmax(encoder_out)
xs_pad = xs_pad + self.conditioning_layer(ctc_out)
if self.normalize_before:
xs_pad = self.after_norm(xs_pad)
if self.out_units is not None:
xs_pad = self.output_linear(xs_pad)
olens = masks.squeeze(1).sum(1)
if len(intermediate_outs) > 0:
return (xs_pad, intermediate_outs), olens, None
return xs_pad, olens, None
def gen_tf2torch_map_dict(self):
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
map_dict_local = {
# cicd
# torch: conv1d.weight in "out_channel in_channel kernel_size"
# tf : conv1d.weight in "kernel_size in_channel out_channel"
# torch: linear.weight in "out_channel in_channel"
# tf : dense.weight in "in_channel out_channel"
"{}.encoders.layeridx.norm1.weight".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/multi_head/LayerNorm/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.encoders.layeridx.norm1.bias".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/multi_head/LayerNorm/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.encoders.layeridx.self_attn.linear_q_k_v.weight".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/multi_head/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": 0,
"transpose": (1, 0),
}, # (768,256),(1,256,768)
"{}.encoders.layeridx.self_attn.linear_q_k_v.bias".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/multi_head/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (768,),(768,)
"{}.encoders.layeridx.self_attn.linear_out.weight".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/multi_head/conv1d_1/kernel".format(tensor_name_prefix_tf),
"squeeze": 0,
"transpose": (1, 0),
}, # (256,256),(1,256,256)
"{}.encoders.layeridx.self_attn.linear_out.bias".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/multi_head/conv1d_1/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
# ffn
"{}.encoders.layeridx.norm2.weight".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/ffn/LayerNorm/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.encoders.layeridx.norm2.bias".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/ffn/LayerNorm/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.encoders.layeridx.feed_forward.w_1.weight".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/ffn/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": 0,
"transpose": (1, 0),
}, # (1024,256),(1,256,1024)
"{}.encoders.layeridx.feed_forward.w_1.bias".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/ffn/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (1024,),(1024,)
"{}.encoders.layeridx.feed_forward.w_2.weight".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/ffn/conv1d_1/kernel".format(tensor_name_prefix_tf),
"squeeze": 0,
"transpose": (1, 0),
}, # (256,1024),(1,1024,256)
"{}.encoders.layeridx.feed_forward.w_2.bias".format(tensor_name_prefix_torch):
{"name": "{}/layer_layeridx/ffn/conv1d_1/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
# out norm
"{}.after_norm.weight".format(tensor_name_prefix_torch):
{"name": "{}/LayerNorm/gamma".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
"{}.after_norm.bias".format(tensor_name_prefix_torch):
{"name": "{}/LayerNorm/beta".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
}
if self.out_units is not None:
map_dict_local.update({
"{}.output_linear.weight".format(tensor_name_prefix_torch):
{"name": "{}/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": 0,
"transpose": (1, 0),
},
"{}.output_linear.bias".format(tensor_name_prefix_torch):
{"name": "{}/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
}, # (256,),(256,)
})
return map_dict_local
def convert_tf2torch(self,
var_dict_tf,
var_dict_torch,
):
map_dict = self.gen_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
# process special (first and last) layers
if name in map_dict:
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
assert var_dict_torch[name].size() == data_tf.size(), \
"{}, {}, {} != {}".format(name, name_tf,
var_dict_torch[name].size(), data_tf.size())
var_dict_torch_update[name] = data_tf
logging.info("torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
))
# process general layers
else:
# self.tf2torch_tensor_name_prefix_torch may include ".", solve this case
names = name.replace(self.tf2torch_tensor_name_prefix_torch, "todo").split('.')
layeridx = int(names[2])
name_q = name.replace(".{}.".format(layeridx), ".layeridx.")
if name_q in map_dict.keys():
name_v = map_dict[name_q]["name"]
name_tf = name_v.replace("layeridx", "{}".format(layeridx))
data_tf = var_dict_tf[name_tf]
if map_dict[name_q]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name_q]["squeeze"])
if map_dict[name_q]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name_q]["transpose"])
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
assert var_dict_torch[name].size() == data_tf.size(), \
"{}, {}, {} != {}".format(name, name_tf,
var_dict_torch[name].size(), data_tf.size())
var_dict_torch_update[name] = data_tf
logging.info("torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
))
else:
logging.warning("{} is missed from tf checkpoint".format(name))
return var_dict_torch_update