mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
274
funasr_local/models/e2e_sv.py
Normal file
274
funasr_local/models/e2e_sv.py
Normal file
@@ -0,0 +1,274 @@
|
||||
"""
|
||||
Author: Speech Lab, Alibaba Group, China
|
||||
"""
|
||||
|
||||
import logging
|
||||
from contextlib import contextmanager
|
||||
from distutils.version import LooseVersion
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.layers.abs_normalize import AbsNormalize
|
||||
from funasr_local.losses.label_smoothing_loss import (
|
||||
LabelSmoothingLoss, # noqa: H301
|
||||
)
|
||||
from funasr_local.models.ctc import CTC
|
||||
from funasr_local.models.decoder.abs_decoder import AbsDecoder
|
||||
from funasr_local.models.encoder.abs_encoder import AbsEncoder
|
||||
from funasr_local.models.frontend.abs_frontend import AbsFrontend
|
||||
from funasr_local.models.postencoder.abs_postencoder import AbsPostEncoder
|
||||
from funasr_local.models.preencoder.abs_preencoder import AbsPreEncoder
|
||||
from funasr_local.models.specaug.abs_specaug import AbsSpecAug
|
||||
from funasr_local.modules.add_sos_eos import add_sos_eos
|
||||
from funasr_local.modules.e2e_asr_common import ErrorCalculator
|
||||
from funasr_local.modules.nets_utils import th_accuracy
|
||||
from funasr_local.torch_utils.device_funcs import force_gatherable
|
||||
from funasr_local.train.abs_espnet_model import AbsESPnetModel
|
||||
|
||||
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
||||
from torch.cuda.amp import autocast
|
||||
else:
|
||||
# Nothing to do if torch<1.6.0
|
||||
@contextmanager
|
||||
def autocast(enabled=True):
|
||||
yield
|
||||
|
||||
|
||||
class ESPnetSVModel(AbsESPnetModel):
|
||||
"""CTC-attention hybrid Encoder-Decoder model"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
token_list: Union[Tuple[str, ...], List[str]],
|
||||
frontend: Optional[AbsFrontend],
|
||||
specaug: Optional[AbsSpecAug],
|
||||
normalize: Optional[AbsNormalize],
|
||||
preencoder: Optional[AbsPreEncoder],
|
||||
encoder: AbsEncoder,
|
||||
postencoder: Optional[AbsPostEncoder],
|
||||
pooling_layer: torch.nn.Module,
|
||||
decoder: AbsDecoder,
|
||||
):
|
||||
assert check_argument_types()
|
||||
|
||||
super().__init__()
|
||||
# note that eos is the same as sos (equivalent ID)
|
||||
self.vocab_size = vocab_size
|
||||
self.token_list = token_list.copy()
|
||||
|
||||
self.frontend = frontend
|
||||
self.specaug = specaug
|
||||
self.normalize = normalize
|
||||
self.preencoder = preencoder
|
||||
self.postencoder = postencoder
|
||||
self.encoder = encoder
|
||||
self.pooling_layer = pooling_layer
|
||||
self.decoder = decoder
|
||||
|
||||
def forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
text: torch.Tensor,
|
||||
text_lengths: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||||
"""Frontend + Encoder + Decoder + Calc loss
|
||||
|
||||
Args:
|
||||
speech: (Batch, Length, ...)
|
||||
speech_lengths: (Batch, )
|
||||
text: (Batch, Length)
|
||||
text_lengths: (Batch,)
|
||||
"""
|
||||
assert text_lengths.dim() == 1, text_lengths.shape
|
||||
# Check that batch_size is unified
|
||||
assert (
|
||||
speech.shape[0]
|
||||
== speech_lengths.shape[0]
|
||||
== text.shape[0]
|
||||
== text_lengths.shape[0]
|
||||
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
|
||||
batch_size = speech.shape[0]
|
||||
|
||||
# for data-parallel
|
||||
text = text[:, : text_lengths.max()]
|
||||
|
||||
# 1. Encoder
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
intermediate_outs = None
|
||||
if isinstance(encoder_out, tuple):
|
||||
intermediate_outs = encoder_out[1]
|
||||
encoder_out = encoder_out[0]
|
||||
|
||||
loss_att, acc_att, cer_att, wer_att = None, None, None, None
|
||||
loss_ctc, cer_ctc = None, None
|
||||
loss_transducer, cer_transducer, wer_transducer = None, None, None
|
||||
stats = dict()
|
||||
|
||||
# 1. CTC branch
|
||||
if self.ctc_weight != 0.0:
|
||||
loss_ctc, cer_ctc = self._calc_ctc_loss(
|
||||
encoder_out, encoder_out_lens, text, text_lengths
|
||||
)
|
||||
|
||||
# Collect CTC branch stats
|
||||
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
|
||||
stats["cer_ctc"] = cer_ctc
|
||||
|
||||
# Intermediate CTC (optional)
|
||||
loss_interctc = 0.0
|
||||
if self.interctc_weight != 0.0 and intermediate_outs is not None:
|
||||
for layer_idx, intermediate_out in intermediate_outs:
|
||||
# we assume intermediate_out has the same length & padding
|
||||
# as those of encoder_out
|
||||
loss_ic, cer_ic = self._calc_ctc_loss(
|
||||
intermediate_out, encoder_out_lens, text, text_lengths
|
||||
)
|
||||
loss_interctc = loss_interctc + loss_ic
|
||||
|
||||
# Collect Intermedaite CTC stats
|
||||
stats["loss_interctc_layer{}".format(layer_idx)] = (
|
||||
loss_ic.detach() if loss_ic is not None else None
|
||||
)
|
||||
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
|
||||
|
||||
loss_interctc = loss_interctc / len(intermediate_outs)
|
||||
|
||||
# calculate whole encoder loss
|
||||
loss_ctc = (
|
||||
1 - self.interctc_weight
|
||||
) * loss_ctc + self.interctc_weight * loss_interctc
|
||||
|
||||
if self.use_transducer_decoder:
|
||||
# 2a. Transducer decoder branch
|
||||
(
|
||||
loss_transducer,
|
||||
cer_transducer,
|
||||
wer_transducer,
|
||||
) = self._calc_transducer_loss(
|
||||
encoder_out,
|
||||
encoder_out_lens,
|
||||
text,
|
||||
)
|
||||
|
||||
if loss_ctc is not None:
|
||||
loss = loss_transducer + (self.ctc_weight * loss_ctc)
|
||||
else:
|
||||
loss = loss_transducer
|
||||
|
||||
# Collect Transducer branch stats
|
||||
stats["loss_transducer"] = (
|
||||
loss_transducer.detach() if loss_transducer is not None else None
|
||||
)
|
||||
stats["cer_transducer"] = cer_transducer
|
||||
stats["wer_transducer"] = wer_transducer
|
||||
|
||||
else:
|
||||
# 2b. Attention decoder branch
|
||||
if self.ctc_weight != 1.0:
|
||||
loss_att, acc_att, cer_att, wer_att = self._calc_att_loss(
|
||||
encoder_out, encoder_out_lens, text, text_lengths
|
||||
)
|
||||
|
||||
# 3. CTC-Att loss definition
|
||||
if self.ctc_weight == 0.0:
|
||||
loss = loss_att
|
||||
elif self.ctc_weight == 1.0:
|
||||
loss = loss_ctc
|
||||
else:
|
||||
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
|
||||
|
||||
# Collect Attn branch stats
|
||||
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
|
||||
stats["acc"] = acc_att
|
||||
stats["cer"] = cer_att
|
||||
stats["wer"] = wer_att
|
||||
|
||||
# Collect total loss stats
|
||||
stats["loss"] = torch.clone(loss.detach())
|
||||
|
||||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||||
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||||
return loss, stats, weight
|
||||
|
||||
def collect_feats(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
text: torch.Tensor,
|
||||
text_lengths: torch.Tensor,
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
if self.extract_feats_in_collect_stats:
|
||||
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||||
else:
|
||||
# Generate dummy stats if extract_feats_in_collect_stats is False
|
||||
logging.warning(
|
||||
"Generating dummy stats for feats and feats_lengths, "
|
||||
"because encoder_conf.extract_feats_in_collect_stats is "
|
||||
f"{self.extract_feats_in_collect_stats}"
|
||||
)
|
||||
feats, feats_lengths = speech, speech_lengths
|
||||
return {"feats": feats, "feats_lengths": feats_lengths}
|
||||
|
||||
def encode(
|
||||
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Frontend + Encoder. Note that this method is used by asr_inference.py
|
||||
|
||||
Args:
|
||||
speech: (Batch, Length, ...)
|
||||
speech_lengths: (Batch, )
|
||||
"""
|
||||
with autocast(False):
|
||||
# 1. Extract feats
|
||||
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||||
|
||||
# 2. Data augmentation
|
||||
if self.specaug is not None and self.training:
|
||||
feats, feats_lengths = self.specaug(feats, feats_lengths)
|
||||
|
||||
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
||||
if self.normalize is not None:
|
||||
feats, feats_lengths = self.normalize(feats, feats_lengths)
|
||||
|
||||
# Pre-encoder, e.g. used for raw input data
|
||||
if self.preencoder is not None:
|
||||
feats, feats_lengths = self.preencoder(feats, feats_lengths)
|
||||
|
||||
# 4. Forward encoder
|
||||
# feats: (Batch, Length, Dim) -> (Batch, Channel, Length2, Dim2)
|
||||
encoder_out, encoder_out_lens = self.encoder(feats, feats_lengths)
|
||||
|
||||
# Post-encoder, e.g. NLU
|
||||
if self.postencoder is not None:
|
||||
encoder_out, encoder_out_lens = self.postencoder(
|
||||
encoder_out, encoder_out_lens
|
||||
)
|
||||
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
def _extract_feats(
|
||||
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
assert speech_lengths.dim() == 1, speech_lengths.shape
|
||||
|
||||
# for data-parallel
|
||||
speech = speech[:, : speech_lengths.max()]
|
||||
|
||||
if self.frontend is not None:
|
||||
# Frontend
|
||||
# e.g. STFT and Feature extract
|
||||
# data_loader may send time-domain signal in this case
|
||||
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
|
||||
feats, feats_lengths = self.frontend(speech, speech_lengths)
|
||||
else:
|
||||
# No frontend and no feature extract
|
||||
feats, feats_lengths = speech, speech_lengths
|
||||
return feats, feats_lengths
|
||||
Reference in New Issue
Block a user