mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
494
funasr_local/models/e2e_diar_sond.py
Normal file
494
funasr_local/models/e2e_diar_sond.py
Normal file
@@ -0,0 +1,494 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
||||
# MIT License (https://opensource.org/licenses/MIT)
|
||||
|
||||
from contextlib import contextmanager
|
||||
from distutils.version import LooseVersion
|
||||
from itertools import permutations
|
||||
from typing import Dict
|
||||
from typing import Optional
|
||||
from typing import Tuple, List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.modules.nets_utils import to_device
|
||||
from funasr_local.modules.nets_utils import make_pad_mask
|
||||
from funasr_local.models.decoder.abs_decoder import AbsDecoder
|
||||
from funasr_local.models.encoder.abs_encoder import AbsEncoder
|
||||
from funasr_local.models.frontend.abs_frontend import AbsFrontend
|
||||
from funasr_local.models.specaug.abs_specaug import AbsSpecAug
|
||||
from funasr_local.layers.abs_normalize import AbsNormalize
|
||||
from funasr_local.torch_utils.device_funcs import force_gatherable
|
||||
from funasr_local.train.abs_espnet_model import AbsESPnetModel
|
||||
from funasr_local.losses.label_smoothing_loss import LabelSmoothingLoss, SequenceBinaryCrossEntropy
|
||||
from funasr_local.utils.misc import int2vec
|
||||
|
||||
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
||||
from torch.cuda.amp import autocast
|
||||
else:
|
||||
# Nothing to do if torch<1.6.0
|
||||
@contextmanager
|
||||
def autocast(enabled=True):
|
||||
yield
|
||||
|
||||
|
||||
class DiarSondModel(AbsESPnetModel):
|
||||
"""
|
||||
Author: Speech Lab, Alibaba Group, China
|
||||
SOND: Speaker Overlap-aware Neural Diarization for Multi-party Meeting Analysis
|
||||
https://arxiv.org/abs/2211.10243
|
||||
TOLD: A Novel Two-Stage Overlap-Aware Framework for Speaker Diarization
|
||||
https://arxiv.org/abs/2303.05397
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
frontend: Optional[AbsFrontend],
|
||||
specaug: Optional[AbsSpecAug],
|
||||
normalize: Optional[AbsNormalize],
|
||||
encoder: torch.nn.Module,
|
||||
speaker_encoder: Optional[torch.nn.Module],
|
||||
ci_scorer: torch.nn.Module,
|
||||
cd_scorer: Optional[torch.nn.Module],
|
||||
decoder: torch.nn.Module,
|
||||
token_list: list,
|
||||
lsm_weight: float = 0.1,
|
||||
length_normalized_loss: bool = False,
|
||||
max_spk_num: int = 16,
|
||||
label_aggregator: Optional[torch.nn.Module] = None,
|
||||
normalize_speech_speaker: bool = False,
|
||||
ignore_id: int = -1,
|
||||
speaker_discrimination_loss_weight: float = 1.0,
|
||||
inter_score_loss_weight: float = 0.0,
|
||||
inputs_type: str = "raw",
|
||||
):
|
||||
assert check_argument_types()
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.encoder = encoder
|
||||
self.speaker_encoder = speaker_encoder
|
||||
self.ci_scorer = ci_scorer
|
||||
self.cd_scorer = cd_scorer
|
||||
self.normalize = normalize
|
||||
self.frontend = frontend
|
||||
self.specaug = specaug
|
||||
self.label_aggregator = label_aggregator
|
||||
self.decoder = decoder
|
||||
self.token_list = token_list
|
||||
self.max_spk_num = max_spk_num
|
||||
self.normalize_speech_speaker = normalize_speech_speaker
|
||||
self.ignore_id = ignore_id
|
||||
self.criterion_diar = LabelSmoothingLoss(
|
||||
size=vocab_size,
|
||||
padding_idx=ignore_id,
|
||||
smoothing=lsm_weight,
|
||||
normalize_length=length_normalized_loss,
|
||||
)
|
||||
self.criterion_bce = SequenceBinaryCrossEntropy(normalize_length=length_normalized_loss)
|
||||
self.pse_embedding = self.generate_pse_embedding()
|
||||
self.power_weight = torch.from_numpy(2 ** np.arange(max_spk_num)[np.newaxis, np.newaxis, :]).float()
|
||||
self.int_token_arr = torch.from_numpy(np.array(self.token_list).astype(int)[np.newaxis, np.newaxis, :]).int()
|
||||
self.speaker_discrimination_loss_weight = speaker_discrimination_loss_weight
|
||||
self.inter_score_loss_weight = inter_score_loss_weight
|
||||
self.forward_steps = 0
|
||||
self.inputs_type = inputs_type
|
||||
|
||||
def generate_pse_embedding(self):
|
||||
embedding = np.zeros((len(self.token_list), self.max_spk_num), dtype=np.float)
|
||||
for idx, pse_label in enumerate(self.token_list):
|
||||
emb = int2vec(int(pse_label), vec_dim=self.max_spk_num, dtype=np.float)
|
||||
embedding[idx] = emb
|
||||
return torch.from_numpy(embedding)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor = None,
|
||||
profile: torch.Tensor = None,
|
||||
profile_lengths: torch.Tensor = None,
|
||||
binary_labels: torch.Tensor = None,
|
||||
binary_labels_lengths: torch.Tensor = None,
|
||||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||||
"""Frontend + Encoder + Speaker Encoder + CI Scorer + CD Scorer + Decoder + Calc loss
|
||||
|
||||
Args:
|
||||
speech: (Batch, samples) or (Batch, frames, input_size)
|
||||
speech_lengths: (Batch,) default None for chunk interator,
|
||||
because the chunk-iterator does not
|
||||
have the speech_lengths returned.
|
||||
see in
|
||||
espnet2/iterators/chunk_iter_factory.py
|
||||
profile: (Batch, N_spk, dim)
|
||||
profile_lengths: (Batch,)
|
||||
binary_labels: (Batch, frames, max_spk_num)
|
||||
binary_labels_lengths: (Batch,)
|
||||
"""
|
||||
assert speech.shape[0] <= binary_labels.shape[0], (speech.shape, binary_labels.shape)
|
||||
batch_size = speech.shape[0]
|
||||
self.forward_steps = self.forward_steps + 1
|
||||
if self.pse_embedding.device != speech.device:
|
||||
self.pse_embedding = self.pse_embedding.to(speech.device)
|
||||
self.power_weight = self.power_weight.to(speech.device)
|
||||
self.int_token_arr = self.int_token_arr.to(speech.device)
|
||||
|
||||
# 1. Network forward
|
||||
pred, inter_outputs = self.prediction_forward(
|
||||
speech, speech_lengths,
|
||||
profile, profile_lengths,
|
||||
return_inter_outputs=True
|
||||
)
|
||||
(speech, speech_lengths), (profile, profile_lengths), (ci_score, cd_score) = inter_outputs
|
||||
|
||||
# 2. Aggregate time-domain labels to match forward outputs
|
||||
if self.label_aggregator is not None:
|
||||
binary_labels, binary_labels_lengths = self.label_aggregator(
|
||||
binary_labels, binary_labels_lengths
|
||||
)
|
||||
# 2. Calculate power-set encoding (PSE) labels
|
||||
raw_pse_labels = torch.sum(binary_labels * self.power_weight, dim=2, keepdim=True)
|
||||
pse_labels = torch.argmax((raw_pse_labels.int() == self.int_token_arr).float(), dim=2)
|
||||
|
||||
# If encoder uses conv* as input_layer (i.e., subsampling),
|
||||
# the sequence length of 'pred' might be slightly less than the
|
||||
# length of 'spk_labels'. Here we force them to be equal.
|
||||
length_diff_tolerance = 2
|
||||
length_diff = abs(pse_labels.shape[1] - pred.shape[1])
|
||||
if length_diff <= length_diff_tolerance:
|
||||
min_len = min(pred.shape[1], pse_labels.shape[1])
|
||||
pse_labels = pse_labels[:, :min_len]
|
||||
pred = pred[:, :min_len]
|
||||
cd_score = cd_score[:, :min_len]
|
||||
ci_score = ci_score[:, :min_len]
|
||||
|
||||
loss_diar = self.classification_loss(pred, pse_labels, binary_labels_lengths)
|
||||
loss_spk_dis = self.speaker_discrimination_loss(profile, profile_lengths)
|
||||
loss_inter_ci, loss_inter_cd = self.internal_score_loss(cd_score, ci_score, pse_labels, binary_labels_lengths)
|
||||
label_mask = make_pad_mask(binary_labels_lengths, maxlen=pse_labels.shape[1]).to(pse_labels.device)
|
||||
loss = (loss_diar + self.speaker_discrimination_loss_weight * loss_spk_dis
|
||||
+ self.inter_score_loss_weight * (loss_inter_ci + loss_inter_cd))
|
||||
|
||||
(
|
||||
correct,
|
||||
num_frames,
|
||||
speech_scored,
|
||||
speech_miss,
|
||||
speech_falarm,
|
||||
speaker_scored,
|
||||
speaker_miss,
|
||||
speaker_falarm,
|
||||
speaker_error,
|
||||
) = self.calc_diarization_error(
|
||||
pred=F.embedding(pred.argmax(dim=2) * (~label_mask), self.pse_embedding),
|
||||
label=F.embedding(pse_labels * (~label_mask), self.pse_embedding),
|
||||
length=binary_labels_lengths
|
||||
)
|
||||
|
||||
if speech_scored > 0 and num_frames > 0:
|
||||
sad_mr, sad_fr, mi, fa, cf, acc, der = (
|
||||
speech_miss / speech_scored,
|
||||
speech_falarm / speech_scored,
|
||||
speaker_miss / speaker_scored,
|
||||
speaker_falarm / speaker_scored,
|
||||
speaker_error / speaker_scored,
|
||||
correct / num_frames,
|
||||
(speaker_miss + speaker_falarm + speaker_error) / speaker_scored,
|
||||
)
|
||||
else:
|
||||
sad_mr, sad_fr, mi, fa, cf, acc, der = 0, 0, 0, 0, 0, 0, 0
|
||||
|
||||
stats = dict(
|
||||
loss=loss.detach(),
|
||||
loss_diar=loss_diar.detach() if loss_diar is not None else None,
|
||||
loss_spk_dis=loss_spk_dis.detach() if loss_spk_dis is not None else None,
|
||||
loss_inter_ci=loss_inter_ci.detach() if loss_inter_ci is not None else None,
|
||||
loss_inter_cd=loss_inter_cd.detach() if loss_inter_cd is not None else None,
|
||||
sad_mr=sad_mr,
|
||||
sad_fr=sad_fr,
|
||||
mi=mi,
|
||||
fa=fa,
|
||||
cf=cf,
|
||||
acc=acc,
|
||||
der=der,
|
||||
forward_steps=self.forward_steps,
|
||||
)
|
||||
|
||||
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||||
return loss, stats, weight
|
||||
|
||||
def classification_loss(
|
||||
self,
|
||||
predictions: torch.Tensor,
|
||||
labels: torch.Tensor,
|
||||
prediction_lengths: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
mask = make_pad_mask(prediction_lengths, maxlen=labels.shape[1])
|
||||
pad_labels = labels.masked_fill(
|
||||
mask.to(predictions.device),
|
||||
value=self.ignore_id
|
||||
)
|
||||
loss = self.criterion_diar(predictions.contiguous(), pad_labels)
|
||||
|
||||
return loss
|
||||
|
||||
def speaker_discrimination_loss(
|
||||
self,
|
||||
profile: torch.Tensor,
|
||||
profile_lengths: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float() # (B, N, 1)
|
||||
mask = torch.matmul(profile_mask, profile_mask.transpose(1, 2)) # (B, N, N)
|
||||
mask = mask * (1.0 - torch.eye(self.max_spk_num).unsqueeze(0).to(mask))
|
||||
|
||||
eps = 1e-12
|
||||
coding_norm = torch.linalg.norm(
|
||||
profile * profile_mask + (1 - profile_mask) * eps,
|
||||
dim=2, keepdim=True
|
||||
) * profile_mask
|
||||
# profile: Batch, N, dim
|
||||
cos_theta = F.cosine_similarity(profile.unsqueeze(2), profile.unsqueeze(1), dim=-1, eps=eps) * mask
|
||||
cos_theta = torch.clip(cos_theta, -1 + eps, 1 - eps)
|
||||
loss = (F.relu(mask * coding_norm * (cos_theta - 0.0))).sum() / mask.sum()
|
||||
|
||||
return loss
|
||||
|
||||
def calculate_multi_labels(self, pse_labels, pse_labels_lengths):
|
||||
mask = make_pad_mask(pse_labels_lengths, maxlen=pse_labels.shape[1])
|
||||
padding_labels = pse_labels.masked_fill(
|
||||
mask.to(pse_labels.device),
|
||||
value=0
|
||||
).to(pse_labels)
|
||||
multi_labels = F.embedding(padding_labels, self.pse_embedding)
|
||||
|
||||
return multi_labels
|
||||
|
||||
def internal_score_loss(
|
||||
self,
|
||||
cd_score: torch.Tensor,
|
||||
ci_score: torch.Tensor,
|
||||
pse_labels: torch.Tensor,
|
||||
pse_labels_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
multi_labels = self.calculate_multi_labels(pse_labels, pse_labels_lengths)
|
||||
ci_loss = self.criterion_bce(ci_score, multi_labels, pse_labels_lengths)
|
||||
cd_loss = self.criterion_bce(cd_score, multi_labels, pse_labels_lengths)
|
||||
return ci_loss, cd_loss
|
||||
|
||||
def collect_feats(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
profile: torch.Tensor = None,
|
||||
profile_lengths: torch.Tensor = None,
|
||||
binary_labels: torch.Tensor = None,
|
||||
binary_labels_lengths: torch.Tensor = None,
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||||
return {"feats": feats, "feats_lengths": feats_lengths}
|
||||
|
||||
def encode_speaker(
|
||||
self,
|
||||
profile: torch.Tensor,
|
||||
profile_lengths: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
with autocast(False):
|
||||
if profile.shape[1] < self.max_spk_num:
|
||||
profile = F.pad(profile, [0, 0, 0, self.max_spk_num-profile.shape[1], 0, 0], "constant", 0.0)
|
||||
profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float()
|
||||
profile = F.normalize(profile, dim=2)
|
||||
if self.speaker_encoder is not None:
|
||||
profile = self.speaker_encoder(profile, profile_lengths)[0]
|
||||
return profile * profile_mask, profile_lengths
|
||||
else:
|
||||
return profile, profile_lengths
|
||||
|
||||
def encode_speech(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if self.encoder is not None and self.inputs_type == "raw":
|
||||
speech, speech_lengths = self.encode(speech, speech_lengths)
|
||||
speech_mask = ~make_pad_mask(speech_lengths, maxlen=speech.shape[1])
|
||||
speech_mask = speech_mask.to(speech.device).unsqueeze(-1).float()
|
||||
return speech * speech_mask, speech_lengths
|
||||
else:
|
||||
return speech, speech_lengths
|
||||
|
||||
@staticmethod
|
||||
def concate_speech_ivc(
|
||||
speech: torch.Tensor,
|
||||
ivc: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
nn, tt = ivc.shape[1], speech.shape[1]
|
||||
speech = speech.unsqueeze(dim=1) # B x 1 x T x D
|
||||
speech = speech.expand(-1, nn, -1, -1) # B x N x T x D
|
||||
ivc = ivc.unsqueeze(dim=2) # B x N x 1 x D
|
||||
ivc = ivc.expand(-1, -1, tt, -1) # B x N x T x D
|
||||
sd_in = torch.cat([speech, ivc], dim=3) # B x N x T x 2D
|
||||
return sd_in
|
||||
|
||||
def calc_similarity(
|
||||
self,
|
||||
speech_encoder_outputs: torch.Tensor,
|
||||
speaker_encoder_outputs: torch.Tensor,
|
||||
seq_len: torch.Tensor = None,
|
||||
spk_len: torch.Tensor = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
bb, tt = speech_encoder_outputs.shape[0], speech_encoder_outputs.shape[1]
|
||||
d_sph, d_spk = speech_encoder_outputs.shape[2], speaker_encoder_outputs.shape[2]
|
||||
if self.normalize_speech_speaker:
|
||||
speech_encoder_outputs = F.normalize(speech_encoder_outputs, dim=2)
|
||||
speaker_encoder_outputs = F.normalize(speaker_encoder_outputs, dim=2)
|
||||
ge_in = self.concate_speech_ivc(speech_encoder_outputs, speaker_encoder_outputs)
|
||||
ge_in = torch.reshape(ge_in, [bb * self.max_spk_num, tt, d_sph + d_spk])
|
||||
ge_len = seq_len.unsqueeze(1).expand(-1, self.max_spk_num)
|
||||
ge_len = torch.reshape(ge_len, [bb * self.max_spk_num])
|
||||
cd_simi = self.cd_scorer(ge_in, ge_len)[0]
|
||||
cd_simi = torch.reshape(cd_simi, [bb, self.max_spk_num, tt, 1])
|
||||
cd_simi = cd_simi.squeeze(dim=3).permute([0, 2, 1])
|
||||
|
||||
if isinstance(self.ci_scorer, AbsEncoder):
|
||||
ci_simi = self.ci_scorer(ge_in, ge_len)[0]
|
||||
ci_simi = torch.reshape(ci_simi, [bb, self.max_spk_num, tt]).permute([0, 2, 1])
|
||||
else:
|
||||
ci_simi = self.ci_scorer(speech_encoder_outputs, speaker_encoder_outputs)
|
||||
|
||||
return ci_simi, cd_simi
|
||||
|
||||
def post_net_forward(self, simi, seq_len):
|
||||
logits = self.decoder(simi, seq_len)[0]
|
||||
|
||||
return logits
|
||||
|
||||
def prediction_forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
profile: torch.Tensor,
|
||||
profile_lengths: torch.Tensor,
|
||||
return_inter_outputs: bool = False,
|
||||
) -> [torch.Tensor, Optional[list]]:
|
||||
# speech encoding
|
||||
speech, speech_lengths = self.encode_speech(speech, speech_lengths)
|
||||
# speaker encoding
|
||||
profile, profile_lengths = self.encode_speaker(profile, profile_lengths)
|
||||
# calculating similarity
|
||||
ci_simi, cd_simi = self.calc_similarity(speech, profile, speech_lengths, profile_lengths)
|
||||
similarity = torch.cat([cd_simi, ci_simi], dim=2)
|
||||
# post net forward
|
||||
logits = self.post_net_forward(similarity, speech_lengths)
|
||||
|
||||
if return_inter_outputs:
|
||||
return logits, [(speech, speech_lengths), (profile, profile_lengths), (ci_simi, cd_simi)]
|
||||
return logits
|
||||
|
||||
def encode(
|
||||
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Frontend + Encoder
|
||||
|
||||
Args:
|
||||
speech: (Batch, Length, ...)
|
||||
speech_lengths: (Batch,)
|
||||
"""
|
||||
with autocast(False):
|
||||
# 1. Extract feats
|
||||
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||||
|
||||
# 2. Data augmentation
|
||||
if self.specaug is not None and self.training:
|
||||
feats, feats_lengths = self.specaug(feats, feats_lengths)
|
||||
|
||||
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
||||
if self.normalize is not None:
|
||||
feats, feats_lengths = self.normalize(feats, feats_lengths)
|
||||
|
||||
# 4. Forward encoder
|
||||
# feats: (Batch, Length, Dim)
|
||||
# -> encoder_out: (Batch, Length2, Dim)
|
||||
encoder_outputs = self.encoder(feats, feats_lengths)
|
||||
encoder_out, encoder_out_lens = encoder_outputs[:2]
|
||||
|
||||
assert encoder_out.size(0) == speech.size(0), (
|
||||
encoder_out.size(),
|
||||
speech.size(0),
|
||||
)
|
||||
assert encoder_out.size(1) <= encoder_out_lens.max(), (
|
||||
encoder_out.size(),
|
||||
encoder_out_lens.max(),
|
||||
)
|
||||
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
def _extract_feats(
|
||||
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
batch_size = speech.shape[0]
|
||||
speech_lengths = (
|
||||
speech_lengths
|
||||
if speech_lengths is not None
|
||||
else torch.ones(batch_size).int() * speech.shape[1]
|
||||
)
|
||||
|
||||
assert speech_lengths.dim() == 1, speech_lengths.shape
|
||||
|
||||
# for data-parallel
|
||||
speech = speech[:, : speech_lengths.max()]
|
||||
|
||||
if self.frontend is not None:
|
||||
# Frontend
|
||||
# e.g. STFT and Feature extract
|
||||
# data_loader may send time-domain signal in this case
|
||||
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
|
||||
feats, feats_lengths = self.frontend(speech, speech_lengths)
|
||||
else:
|
||||
# No frontend and no feature extract
|
||||
feats, feats_lengths = speech, speech_lengths
|
||||
return feats, feats_lengths
|
||||
|
||||
@staticmethod
|
||||
def calc_diarization_error(pred, label, length):
|
||||
# Note (jiatong): Credit to https://github.com/hitachi-speech/EEND
|
||||
|
||||
(batch_size, max_len, num_output) = label.size()
|
||||
# mask the padding part
|
||||
mask = ~make_pad_mask(length, maxlen=label.shape[1]).unsqueeze(-1).numpy()
|
||||
|
||||
# pred and label have the shape (batch_size, max_len, num_output)
|
||||
label_np = label.data.cpu().numpy().astype(int)
|
||||
pred_np = (pred.data.cpu().numpy() > 0).astype(int)
|
||||
label_np = label_np * mask
|
||||
pred_np = pred_np * mask
|
||||
length = length.data.cpu().numpy()
|
||||
|
||||
# compute speech activity detection error
|
||||
n_ref = np.sum(label_np, axis=2)
|
||||
n_sys = np.sum(pred_np, axis=2)
|
||||
speech_scored = float(np.sum(n_ref > 0))
|
||||
speech_miss = float(np.sum(np.logical_and(n_ref > 0, n_sys == 0)))
|
||||
speech_falarm = float(np.sum(np.logical_and(n_ref == 0, n_sys > 0)))
|
||||
|
||||
# compute speaker diarization error
|
||||
speaker_scored = float(np.sum(n_ref))
|
||||
speaker_miss = float(np.sum(np.maximum(n_ref - n_sys, 0)))
|
||||
speaker_falarm = float(np.sum(np.maximum(n_sys - n_ref, 0)))
|
||||
n_map = np.sum(np.logical_and(label_np == 1, pred_np == 1), axis=2)
|
||||
speaker_error = float(np.sum(np.minimum(n_ref, n_sys) - n_map))
|
||||
correct = float(1.0 * np.sum((label_np == pred_np) * mask) / num_output)
|
||||
num_frames = np.sum(length)
|
||||
return (
|
||||
correct,
|
||||
num_frames,
|
||||
speech_scored,
|
||||
speech_miss,
|
||||
speech_falarm,
|
||||
speaker_scored,
|
||||
speaker_miss,
|
||||
speaker_falarm,
|
||||
speaker_error,
|
||||
)
|
||||
Reference in New Issue
Block a user