mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-04 17:39:19 +08:00
add files
This commit is contained in:
766
funasr_local/models/decoder/transformer_decoder.py
Normal file
766
funasr_local/models/decoder/transformer_decoder.py
Normal file
@@ -0,0 +1,766 @@
|
||||
# Copyright 2019 Shigeki Karita
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""Decoder definition."""
|
||||
from typing import Any
|
||||
from typing import List
|
||||
from typing import Sequence
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.models.decoder.abs_decoder import AbsDecoder
|
||||
from funasr_local.modules.attention import MultiHeadedAttention
|
||||
from funasr_local.modules.dynamic_conv import DynamicConvolution
|
||||
from funasr_local.modules.dynamic_conv2d import DynamicConvolution2D
|
||||
from funasr_local.modules.embedding import PositionalEncoding
|
||||
from funasr_local.modules.layer_norm import LayerNorm
|
||||
from funasr_local.modules.lightconv import LightweightConvolution
|
||||
from funasr_local.modules.lightconv2d import LightweightConvolution2D
|
||||
from funasr_local.modules.mask import subsequent_mask
|
||||
from funasr_local.modules.nets_utils import make_pad_mask
|
||||
from funasr_local.modules.positionwise_feed_forward import (
|
||||
PositionwiseFeedForward, # noqa: H301
|
||||
)
|
||||
from funasr_local.modules.repeat import repeat
|
||||
from funasr_local.modules.scorers.scorer_interface import BatchScorerInterface
|
||||
|
||||
|
||||
class DecoderLayer(nn.Module):
|
||||
"""Single decoder layer module.
|
||||
|
||||
Args:
|
||||
size (int): Input dimension.
|
||||
self_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` instance can be used as the argument.
|
||||
src_attn (torch.nn.Module): Self-attention module instance.
|
||||
`MultiHeadedAttention` instance can be used as the argument.
|
||||
feed_forward (torch.nn.Module): Feed-forward module instance.
|
||||
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
|
||||
can be used as the argument.
|
||||
dropout_rate (float): Dropout rate.
|
||||
normalize_before (bool): Whether to use layer_norm before the first block.
|
||||
concat_after (bool): Whether to concat attention layer's input and output.
|
||||
if True, additional linear will be applied.
|
||||
i.e. x -> x + linear(concat(x, att(x)))
|
||||
if False, no additional linear will be applied. i.e. x -> x + att(x)
|
||||
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size,
|
||||
self_attn,
|
||||
src_attn,
|
||||
feed_forward,
|
||||
dropout_rate,
|
||||
normalize_before=True,
|
||||
concat_after=False,
|
||||
):
|
||||
"""Construct an DecoderLayer object."""
|
||||
super(DecoderLayer, self).__init__()
|
||||
self.size = size
|
||||
self.self_attn = self_attn
|
||||
self.src_attn = src_attn
|
||||
self.feed_forward = feed_forward
|
||||
self.norm1 = LayerNorm(size)
|
||||
self.norm2 = LayerNorm(size)
|
||||
self.norm3 = LayerNorm(size)
|
||||
self.dropout = nn.Dropout(dropout_rate)
|
||||
self.normalize_before = normalize_before
|
||||
self.concat_after = concat_after
|
||||
if self.concat_after:
|
||||
self.concat_linear1 = nn.Linear(size + size, size)
|
||||
self.concat_linear2 = nn.Linear(size + size, size)
|
||||
|
||||
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None):
|
||||
"""Compute decoded features.
|
||||
|
||||
Args:
|
||||
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
|
||||
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out).
|
||||
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size).
|
||||
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in).
|
||||
cache (List[torch.Tensor]): List of cached tensors.
|
||||
Each tensor shape should be (#batch, maxlen_out - 1, size).
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor(#batch, maxlen_out, size).
|
||||
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
|
||||
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
|
||||
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
|
||||
|
||||
"""
|
||||
residual = tgt
|
||||
if self.normalize_before:
|
||||
tgt = self.norm1(tgt)
|
||||
|
||||
if cache is None:
|
||||
tgt_q = tgt
|
||||
tgt_q_mask = tgt_mask
|
||||
else:
|
||||
# compute only the last frame query keeping dim: max_time_out -> 1
|
||||
assert cache.shape == (
|
||||
tgt.shape[0],
|
||||
tgt.shape[1] - 1,
|
||||
self.size,
|
||||
), f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
|
||||
tgt_q = tgt[:, -1:, :]
|
||||
residual = residual[:, -1:, :]
|
||||
tgt_q_mask = None
|
||||
if tgt_mask is not None:
|
||||
tgt_q_mask = tgt_mask[:, -1:, :]
|
||||
|
||||
if self.concat_after:
|
||||
tgt_concat = torch.cat(
|
||||
(tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)), dim=-1
|
||||
)
|
||||
x = residual + self.concat_linear1(tgt_concat)
|
||||
else:
|
||||
x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask))
|
||||
if not self.normalize_before:
|
||||
x = self.norm1(x)
|
||||
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
if self.concat_after:
|
||||
x_concat = torch.cat(
|
||||
(x, self.src_attn(x, memory, memory, memory_mask)), dim=-1
|
||||
)
|
||||
x = residual + self.concat_linear2(x_concat)
|
||||
else:
|
||||
x = residual + self.dropout(self.src_attn(x, memory, memory, memory_mask))
|
||||
if not self.normalize_before:
|
||||
x = self.norm2(x)
|
||||
|
||||
residual = x
|
||||
if self.normalize_before:
|
||||
x = self.norm3(x)
|
||||
x = residual + self.dropout(self.feed_forward(x))
|
||||
if not self.normalize_before:
|
||||
x = self.norm3(x)
|
||||
|
||||
if cache is not None:
|
||||
x = torch.cat([cache, x], dim=1)
|
||||
|
||||
return x, tgt_mask, memory, memory_mask
|
||||
|
||||
|
||||
class BaseTransformerDecoder(AbsDecoder, BatchScorerInterface):
|
||||
"""Base class of Transfomer decoder module.
|
||||
|
||||
Args:
|
||||
vocab_size: output dim
|
||||
encoder_output_size: dimension of attention
|
||||
attention_heads: the number of heads of multi head attention
|
||||
linear_units: the number of units of position-wise feed forward
|
||||
num_blocks: the number of decoder blocks
|
||||
dropout_rate: dropout rate
|
||||
self_attention_dropout_rate: dropout rate for attention
|
||||
input_layer: input layer type
|
||||
use_output_layer: whether to use output layer
|
||||
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding
|
||||
normalize_before: whether to use layer_norm before the first block
|
||||
concat_after: whether to concat attention layer's input and output
|
||||
if True, additional linear will be applied.
|
||||
i.e. x -> x + linear(concat(x, att(x)))
|
||||
if False, no additional linear will be applied.
|
||||
i.e. x -> x + att(x)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
pos_enc_class=PositionalEncoding,
|
||||
normalize_before: bool = True,
|
||||
):
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
attention_dim = encoder_output_size
|
||||
|
||||
if input_layer == "embed":
|
||||
self.embed = torch.nn.Sequential(
|
||||
torch.nn.Embedding(vocab_size, attention_dim),
|
||||
pos_enc_class(attention_dim, positional_dropout_rate),
|
||||
)
|
||||
elif input_layer == "linear":
|
||||
self.embed = torch.nn.Sequential(
|
||||
torch.nn.Linear(vocab_size, attention_dim),
|
||||
torch.nn.LayerNorm(attention_dim),
|
||||
torch.nn.Dropout(dropout_rate),
|
||||
torch.nn.ReLU(),
|
||||
pos_enc_class(attention_dim, positional_dropout_rate),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"only 'embed' or 'linear' is supported: {input_layer}")
|
||||
|
||||
self.normalize_before = normalize_before
|
||||
if self.normalize_before:
|
||||
self.after_norm = LayerNorm(attention_dim)
|
||||
if use_output_layer:
|
||||
self.output_layer = torch.nn.Linear(attention_dim, vocab_size)
|
||||
else:
|
||||
self.output_layer = None
|
||||
|
||||
# Must set by the inheritance
|
||||
self.decoders = None
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hs_pad: torch.Tensor,
|
||||
hlens: torch.Tensor,
|
||||
ys_in_pad: torch.Tensor,
|
||||
ys_in_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Forward decoder.
|
||||
|
||||
Args:
|
||||
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
|
||||
hlens: (batch)
|
||||
ys_in_pad:
|
||||
input token ids, int64 (batch, maxlen_out)
|
||||
if input_layer == "embed"
|
||||
input tensor (batch, maxlen_out, #mels) in the other cases
|
||||
ys_in_lens: (batch)
|
||||
Returns:
|
||||
(tuple): tuple containing:
|
||||
|
||||
x: decoded token score before softmax (batch, maxlen_out, token)
|
||||
if use_output_layer is True,
|
||||
olens: (batch, )
|
||||
"""
|
||||
tgt = ys_in_pad
|
||||
# tgt_mask: (B, 1, L)
|
||||
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device)
|
||||
# m: (1, L, L)
|
||||
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0)
|
||||
# tgt_mask: (B, L, L)
|
||||
tgt_mask = tgt_mask & m
|
||||
|
||||
memory = hs_pad
|
||||
memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to(
|
||||
memory.device
|
||||
)
|
||||
# Padding for Longformer
|
||||
if memory_mask.shape[-1] != memory.shape[1]:
|
||||
padlen = memory.shape[1] - memory_mask.shape[-1]
|
||||
memory_mask = torch.nn.functional.pad(
|
||||
memory_mask, (0, padlen), "constant", False
|
||||
)
|
||||
|
||||
x = self.embed(tgt)
|
||||
x, tgt_mask, memory, memory_mask = self.decoders(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
if self.normalize_before:
|
||||
x = self.after_norm(x)
|
||||
if self.output_layer is not None:
|
||||
x = self.output_layer(x)
|
||||
|
||||
olens = tgt_mask.sum(1)
|
||||
return x, olens
|
||||
|
||||
def forward_one_step(
|
||||
self,
|
||||
tgt: torch.Tensor,
|
||||
tgt_mask: torch.Tensor,
|
||||
memory: torch.Tensor,
|
||||
cache: List[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
||||
"""Forward one step.
|
||||
|
||||
Args:
|
||||
tgt: input token ids, int64 (batch, maxlen_out)
|
||||
tgt_mask: input token mask, (batch, maxlen_out)
|
||||
dtype=torch.uint8 in PyTorch 1.2-
|
||||
dtype=torch.bool in PyTorch 1.2+ (include 1.2)
|
||||
memory: encoded memory, float32 (batch, maxlen_in, feat)
|
||||
cache: cached output list of (batch, max_time_out-1, size)
|
||||
Returns:
|
||||
y, cache: NN output value and cache per `self.decoders`.
|
||||
y.shape` is (batch, maxlen_out, token)
|
||||
"""
|
||||
x = self.embed(tgt)
|
||||
if cache is None:
|
||||
cache = [None] * len(self.decoders)
|
||||
new_cache = []
|
||||
for c, decoder in zip(cache, self.decoders):
|
||||
x, tgt_mask, memory, memory_mask = decoder(
|
||||
x, tgt_mask, memory, None, cache=c
|
||||
)
|
||||
new_cache.append(x)
|
||||
|
||||
if self.normalize_before:
|
||||
y = self.after_norm(x[:, -1])
|
||||
else:
|
||||
y = x[:, -1]
|
||||
if self.output_layer is not None:
|
||||
y = torch.log_softmax(self.output_layer(y), dim=-1)
|
||||
|
||||
return y, new_cache
|
||||
|
||||
def score(self, ys, state, x):
|
||||
"""Score."""
|
||||
ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0)
|
||||
logp, state = self.forward_one_step(
|
||||
ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state
|
||||
)
|
||||
return logp.squeeze(0), state
|
||||
|
||||
def batch_score(
|
||||
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, List[Any]]:
|
||||
"""Score new token batch.
|
||||
|
||||
Args:
|
||||
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
|
||||
states (List[Any]): Scorer states for prefix tokens.
|
||||
xs (torch.Tensor):
|
||||
The encoder feature that generates ys (n_batch, xlen, n_feat).
|
||||
|
||||
Returns:
|
||||
tuple[torch.Tensor, List[Any]]: Tuple of
|
||||
batchfied scores for next token with shape of `(n_batch, n_vocab)`
|
||||
and next state list for ys.
|
||||
|
||||
"""
|
||||
# merge states
|
||||
n_batch = len(ys)
|
||||
n_layers = len(self.decoders)
|
||||
if states[0] is None:
|
||||
batch_state = None
|
||||
else:
|
||||
# transpose state of [batch, layer] into [layer, batch]
|
||||
batch_state = [
|
||||
torch.stack([states[b][i] for b in range(n_batch)])
|
||||
for i in range(n_layers)
|
||||
]
|
||||
|
||||
# batch decoding
|
||||
ys_mask = subsequent_mask(ys.size(-1), device=xs.device).unsqueeze(0)
|
||||
logp, states = self.forward_one_step(ys, ys_mask, xs, cache=batch_state)
|
||||
|
||||
# transpose state of [layer, batch] into [batch, layer]
|
||||
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)]
|
||||
return logp, state_list
|
||||
|
||||
|
||||
class TransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
self_attention_dropout_rate: float = 0.0,
|
||||
src_attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
pos_enc_class=PositionalEncoding,
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
):
|
||||
assert check_argument_types()
|
||||
super().__init__(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
dropout_rate=dropout_rate,
|
||||
positional_dropout_rate=positional_dropout_rate,
|
||||
input_layer=input_layer,
|
||||
use_output_layer=use_output_layer,
|
||||
pos_enc_class=pos_enc_class,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
attention_dim = encoder_output_size
|
||||
self.decoders = repeat(
|
||||
num_blocks,
|
||||
lambda lnum: DecoderLayer(
|
||||
attention_dim,
|
||||
MultiHeadedAttention(
|
||||
attention_heads, attention_dim, self_attention_dropout_rate
|
||||
),
|
||||
MultiHeadedAttention(
|
||||
attention_heads, attention_dim, src_attention_dropout_rate
|
||||
),
|
||||
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class ParaformerDecoderSAN(BaseTransformerDecoder):
|
||||
"""
|
||||
Author: Speech Lab of DAMO Academy, Alibaba Group
|
||||
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
|
||||
https://arxiv.org/abs/2006.01713
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
self_attention_dropout_rate: float = 0.0,
|
||||
src_attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
pos_enc_class=PositionalEncoding,
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
embeds_id: int = -1,
|
||||
):
|
||||
assert check_argument_types()
|
||||
super().__init__(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
dropout_rate=dropout_rate,
|
||||
positional_dropout_rate=positional_dropout_rate,
|
||||
input_layer=input_layer,
|
||||
use_output_layer=use_output_layer,
|
||||
pos_enc_class=pos_enc_class,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
attention_dim = encoder_output_size
|
||||
self.decoders = repeat(
|
||||
num_blocks,
|
||||
lambda lnum: DecoderLayer(
|
||||
attention_dim,
|
||||
MultiHeadedAttention(
|
||||
attention_heads, attention_dim, self_attention_dropout_rate
|
||||
),
|
||||
MultiHeadedAttention(
|
||||
attention_heads, attention_dim, src_attention_dropout_rate
|
||||
),
|
||||
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after,
|
||||
),
|
||||
)
|
||||
self.embeds_id = embeds_id
|
||||
self.attention_dim = attention_dim
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hs_pad: torch.Tensor,
|
||||
hlens: torch.Tensor,
|
||||
ys_in_pad: torch.Tensor,
|
||||
ys_in_lens: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Forward decoder.
|
||||
|
||||
Args:
|
||||
hs_pad: encoded memory, float32 (batch, maxlen_in, feat)
|
||||
hlens: (batch)
|
||||
ys_in_pad:
|
||||
input token ids, int64 (batch, maxlen_out)
|
||||
if input_layer == "embed"
|
||||
input tensor (batch, maxlen_out, #mels) in the other cases
|
||||
ys_in_lens: (batch)
|
||||
Returns:
|
||||
(tuple): tuple containing:
|
||||
|
||||
x: decoded token score before softmax (batch, maxlen_out, token)
|
||||
if use_output_layer is True,
|
||||
olens: (batch, )
|
||||
"""
|
||||
tgt = ys_in_pad
|
||||
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device)
|
||||
|
||||
memory = hs_pad
|
||||
memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to(
|
||||
memory.device
|
||||
)
|
||||
# Padding for Longformer
|
||||
if memory_mask.shape[-1] != memory.shape[1]:
|
||||
padlen = memory.shape[1] - memory_mask.shape[-1]
|
||||
memory_mask = torch.nn.functional.pad(
|
||||
memory_mask, (0, padlen), "constant", False
|
||||
)
|
||||
|
||||
# x = self.embed(tgt)
|
||||
x = tgt
|
||||
embeds_outputs = None
|
||||
for layer_id, decoder in enumerate(self.decoders):
|
||||
x, tgt_mask, memory, memory_mask = decoder(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
if layer_id == self.embeds_id:
|
||||
embeds_outputs = x
|
||||
if self.normalize_before:
|
||||
x = self.after_norm(x)
|
||||
if self.output_layer is not None:
|
||||
x = self.output_layer(x)
|
||||
|
||||
olens = tgt_mask.sum(1)
|
||||
if embeds_outputs is not None:
|
||||
return x, olens, embeds_outputs
|
||||
else:
|
||||
return x, olens
|
||||
|
||||
|
||||
class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
self_attention_dropout_rate: float = 0.0,
|
||||
src_attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
pos_enc_class=PositionalEncoding,
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
conv_wshare: int = 4,
|
||||
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11),
|
||||
conv_usebias: int = False,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if len(conv_kernel_length) != num_blocks:
|
||||
raise ValueError(
|
||||
"conv_kernel_length must have equal number of values to num_blocks: "
|
||||
f"{len(conv_kernel_length)} != {num_blocks}"
|
||||
)
|
||||
super().__init__(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
dropout_rate=dropout_rate,
|
||||
positional_dropout_rate=positional_dropout_rate,
|
||||
input_layer=input_layer,
|
||||
use_output_layer=use_output_layer,
|
||||
pos_enc_class=pos_enc_class,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
attention_dim = encoder_output_size
|
||||
self.decoders = repeat(
|
||||
num_blocks,
|
||||
lambda lnum: DecoderLayer(
|
||||
attention_dim,
|
||||
LightweightConvolution(
|
||||
wshare=conv_wshare,
|
||||
n_feat=attention_dim,
|
||||
dropout_rate=self_attention_dropout_rate,
|
||||
kernel_size=conv_kernel_length[lnum],
|
||||
use_kernel_mask=True,
|
||||
use_bias=conv_usebias,
|
||||
),
|
||||
MultiHeadedAttention(
|
||||
attention_heads, attention_dim, src_attention_dropout_rate
|
||||
),
|
||||
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
self_attention_dropout_rate: float = 0.0,
|
||||
src_attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
pos_enc_class=PositionalEncoding,
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
conv_wshare: int = 4,
|
||||
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11),
|
||||
conv_usebias: int = False,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if len(conv_kernel_length) != num_blocks:
|
||||
raise ValueError(
|
||||
"conv_kernel_length must have equal number of values to num_blocks: "
|
||||
f"{len(conv_kernel_length)} != {num_blocks}"
|
||||
)
|
||||
super().__init__(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
dropout_rate=dropout_rate,
|
||||
positional_dropout_rate=positional_dropout_rate,
|
||||
input_layer=input_layer,
|
||||
use_output_layer=use_output_layer,
|
||||
pos_enc_class=pos_enc_class,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
|
||||
attention_dim = encoder_output_size
|
||||
self.decoders = repeat(
|
||||
num_blocks,
|
||||
lambda lnum: DecoderLayer(
|
||||
attention_dim,
|
||||
LightweightConvolution2D(
|
||||
wshare=conv_wshare,
|
||||
n_feat=attention_dim,
|
||||
dropout_rate=self_attention_dropout_rate,
|
||||
kernel_size=conv_kernel_length[lnum],
|
||||
use_kernel_mask=True,
|
||||
use_bias=conv_usebias,
|
||||
),
|
||||
MultiHeadedAttention(
|
||||
attention_heads, attention_dim, src_attention_dropout_rate
|
||||
),
|
||||
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
self_attention_dropout_rate: float = 0.0,
|
||||
src_attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
pos_enc_class=PositionalEncoding,
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
conv_wshare: int = 4,
|
||||
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11),
|
||||
conv_usebias: int = False,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if len(conv_kernel_length) != num_blocks:
|
||||
raise ValueError(
|
||||
"conv_kernel_length must have equal number of values to num_blocks: "
|
||||
f"{len(conv_kernel_length)} != {num_blocks}"
|
||||
)
|
||||
super().__init__(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
dropout_rate=dropout_rate,
|
||||
positional_dropout_rate=positional_dropout_rate,
|
||||
input_layer=input_layer,
|
||||
use_output_layer=use_output_layer,
|
||||
pos_enc_class=pos_enc_class,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
attention_dim = encoder_output_size
|
||||
|
||||
self.decoders = repeat(
|
||||
num_blocks,
|
||||
lambda lnum: DecoderLayer(
|
||||
attention_dim,
|
||||
DynamicConvolution(
|
||||
wshare=conv_wshare,
|
||||
n_feat=attention_dim,
|
||||
dropout_rate=self_attention_dropout_rate,
|
||||
kernel_size=conv_kernel_length[lnum],
|
||||
use_kernel_mask=True,
|
||||
use_bias=conv_usebias,
|
||||
),
|
||||
MultiHeadedAttention(
|
||||
attention_heads, attention_dim, src_attention_dropout_rate
|
||||
),
|
||||
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class DynamicConvolution2DTransformerDecoder(BaseTransformerDecoder):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int,
|
||||
encoder_output_size: int,
|
||||
attention_heads: int = 4,
|
||||
linear_units: int = 2048,
|
||||
num_blocks: int = 6,
|
||||
dropout_rate: float = 0.1,
|
||||
positional_dropout_rate: float = 0.1,
|
||||
self_attention_dropout_rate: float = 0.0,
|
||||
src_attention_dropout_rate: float = 0.0,
|
||||
input_layer: str = "embed",
|
||||
use_output_layer: bool = True,
|
||||
pos_enc_class=PositionalEncoding,
|
||||
normalize_before: bool = True,
|
||||
concat_after: bool = False,
|
||||
conv_wshare: int = 4,
|
||||
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11),
|
||||
conv_usebias: int = False,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if len(conv_kernel_length) != num_blocks:
|
||||
raise ValueError(
|
||||
"conv_kernel_length must have equal number of values to num_blocks: "
|
||||
f"{len(conv_kernel_length)} != {num_blocks}"
|
||||
)
|
||||
super().__init__(
|
||||
vocab_size=vocab_size,
|
||||
encoder_output_size=encoder_output_size,
|
||||
dropout_rate=dropout_rate,
|
||||
positional_dropout_rate=positional_dropout_rate,
|
||||
input_layer=input_layer,
|
||||
use_output_layer=use_output_layer,
|
||||
pos_enc_class=pos_enc_class,
|
||||
normalize_before=normalize_before,
|
||||
)
|
||||
attention_dim = encoder_output_size
|
||||
|
||||
self.decoders = repeat(
|
||||
num_blocks,
|
||||
lambda lnum: DecoderLayer(
|
||||
attention_dim,
|
||||
DynamicConvolution2D(
|
||||
wshare=conv_wshare,
|
||||
n_feat=attention_dim,
|
||||
dropout_rate=self_attention_dropout_rate,
|
||||
kernel_size=conv_kernel_length[lnum],
|
||||
use_kernel_mask=True,
|
||||
use_bias=conv_usebias,
|
||||
),
|
||||
MultiHeadedAttention(
|
||||
attention_heads, attention_dim, src_attention_dropout_rate
|
||||
),
|
||||
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
|
||||
dropout_rate,
|
||||
normalize_before,
|
||||
concat_after,
|
||||
),
|
||||
)
|
||||
Reference in New Issue
Block a user