mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
160
funasr_local/models/data2vec.py
Normal file
160
funasr_local/models/data2vec.py
Normal file
@@ -0,0 +1,160 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from contextlib import contextmanager
|
||||
from distutils.version import LooseVersion
|
||||
from typing import Dict
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.layers.abs_normalize import AbsNormalize
|
||||
from funasr_local.models.encoder.abs_encoder import AbsEncoder
|
||||
from funasr_local.models.frontend.abs_frontend import AbsFrontend
|
||||
from funasr_local.models.preencoder.abs_preencoder import AbsPreEncoder
|
||||
from funasr_local.models.specaug.abs_specaug import AbsSpecAug
|
||||
from funasr_local.torch_utils.device_funcs import force_gatherable
|
||||
from funasr_local.train.abs_espnet_model import AbsESPnetModel
|
||||
|
||||
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
||||
from torch.cuda.amp import autocast
|
||||
else:
|
||||
# Nothing to do if torch<1.6.0
|
||||
@contextmanager
|
||||
def autocast(enabled=True):
|
||||
yield
|
||||
|
||||
|
||||
class Data2VecPretrainModel(AbsESPnetModel):
|
||||
"""Data2Vec Pretrain model"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
frontend: Optional[AbsFrontend],
|
||||
specaug: Optional[AbsSpecAug],
|
||||
normalize: Optional[AbsNormalize],
|
||||
preencoder: Optional[AbsPreEncoder],
|
||||
encoder: AbsEncoder,
|
||||
):
|
||||
assert check_argument_types()
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.frontend = frontend
|
||||
self.specaug = specaug
|
||||
self.normalize = normalize
|
||||
self.preencoder = preencoder
|
||||
self.encoder = encoder
|
||||
self.num_updates = 0
|
||||
|
||||
def forward(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
||||
"""Frontend + Encoder + Calc loss
|
||||
|
||||
Args:
|
||||
speech: (Batch, Length, ...)
|
||||
speech_lengths: (Batch, )
|
||||
"""
|
||||
# Check that batch_size is unified
|
||||
assert (
|
||||
speech.shape[0]
|
||||
== speech_lengths.shape[0]
|
||||
), (speech.shape, speech_lengths.shape)
|
||||
|
||||
self.encoder.set_num_updates(self.num_updates)
|
||||
|
||||
# 1. Encoder
|
||||
encoder_out = self.encode(speech, speech_lengths)
|
||||
|
||||
losses = encoder_out["losses"]
|
||||
loss = sum(losses.values())
|
||||
sample_size = encoder_out["sample_size"]
|
||||
loss = loss.sum() / sample_size
|
||||
|
||||
target_var = float(encoder_out["target_var"])
|
||||
pred_var = float(encoder_out["pred_var"])
|
||||
ema_decay = float(encoder_out["ema_decay"])
|
||||
|
||||
stats = dict(
|
||||
loss=torch.clone(loss.detach()),
|
||||
target_var=target_var,
|
||||
pred_var=pred_var,
|
||||
ema_decay=ema_decay,
|
||||
)
|
||||
|
||||
loss, stats, weight = force_gatherable((loss, stats, sample_size), loss.device)
|
||||
return loss, stats, weight
|
||||
|
||||
def collect_feats(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||||
return {"feats": feats, "feats_lengths": feats_lengths}
|
||||
|
||||
def encode(
|
||||
self,
|
||||
speech: torch.Tensor,
|
||||
speech_lengths: torch.Tensor,
|
||||
):
|
||||
"""Frontend + Encoder.
|
||||
|
||||
Args:
|
||||
speech: (Batch, Length, ...)
|
||||
speech_lengths: (Batch, )
|
||||
"""
|
||||
with autocast(False):
|
||||
# 1. Extract feats
|
||||
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
||||
|
||||
# 2. Data augmentation
|
||||
if self.specaug is not None and self.training:
|
||||
feats, feats_lengths = self.specaug(feats, feats_lengths)
|
||||
|
||||
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
||||
if self.normalize is not None:
|
||||
feats, feats_lengths = self.normalize(feats, feats_lengths)
|
||||
|
||||
# Pre-encoder, e.g. used for raw input data
|
||||
if self.preencoder is not None:
|
||||
feats, feats_lengths = self.preencoder(feats, feats_lengths)
|
||||
|
||||
# 4. Forward encoder
|
||||
if min(speech_lengths) == max(speech_lengths): # for clipping, set speech_lengths as None
|
||||
speech_lengths = None
|
||||
encoder_out = self.encoder(feats, speech_lengths, mask=True, features_only=False)
|
||||
|
||||
return encoder_out
|
||||
|
||||
def _extract_feats(
|
||||
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
assert speech_lengths.dim() == 1, speech_lengths.shape
|
||||
|
||||
# for data-parallel
|
||||
speech = speech[:, : speech_lengths.max()]
|
||||
|
||||
if self.frontend is not None:
|
||||
# Frontend
|
||||
# e.g. STFT and Feature extract
|
||||
# data_loader may send time-domain signal in this case
|
||||
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
|
||||
feats, feats_lengths = self.frontend(speech, speech_lengths)
|
||||
else:
|
||||
# No frontend and no feature extract
|
||||
feats, feats_lengths = speech, speech_lengths
|
||||
return feats, feats_lengths
|
||||
|
||||
def set_num_updates(self, num_updates):
|
||||
self.num_updates = num_updates
|
||||
|
||||
def get_num_updates(self):
|
||||
return self.num_updates
|
||||
Reference in New Issue
Block a user