mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
0
funasr_local/losses/__init__.py
Normal file
0
funasr_local/losses/__init__.py
Normal file
81
funasr_local/losses/label_smoothing_loss.py
Normal file
81
funasr_local/losses/label_smoothing_loss.py
Normal file
@@ -0,0 +1,81 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Copyright 2019 Shigeki Karita
|
||||
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
||||
|
||||
"""Label smoothing module."""
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from funasr_local.modules.nets_utils import make_pad_mask
|
||||
|
||||
|
||||
class LabelSmoothingLoss(nn.Module):
|
||||
"""Label-smoothing loss.
|
||||
|
||||
:param int size: the number of class
|
||||
:param int padding_idx: ignored class id
|
||||
:param float smoothing: smoothing rate (0.0 means the conventional CE)
|
||||
:param bool normalize_length: normalize loss by sequence length if True
|
||||
:param torch.nn.Module criterion: loss function to be smoothed
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
size,
|
||||
padding_idx,
|
||||
smoothing,
|
||||
normalize_length=False,
|
||||
criterion=nn.KLDivLoss(reduction="none"),
|
||||
):
|
||||
"""Construct an LabelSmoothingLoss object."""
|
||||
super(LabelSmoothingLoss, self).__init__()
|
||||
self.criterion = criterion
|
||||
self.padding_idx = padding_idx
|
||||
self.confidence = 1.0 - smoothing
|
||||
self.smoothing = smoothing
|
||||
self.size = size
|
||||
self.true_dist = None
|
||||
self.normalize_length = normalize_length
|
||||
|
||||
def forward(self, x, target):
|
||||
"""Compute loss between x and target.
|
||||
|
||||
:param torch.Tensor x: prediction (batch, seqlen, class)
|
||||
:param torch.Tensor target:
|
||||
target signal masked with self.padding_id (batch, seqlen)
|
||||
:return: scalar float value
|
||||
:rtype torch.Tensor
|
||||
"""
|
||||
assert x.size(2) == self.size
|
||||
batch_size = x.size(0)
|
||||
x = x.view(-1, self.size)
|
||||
target = target.view(-1)
|
||||
with torch.no_grad():
|
||||
true_dist = x.clone()
|
||||
true_dist.fill_(self.smoothing / (self.size - 1))
|
||||
ignore = target == self.padding_idx # (B,)
|
||||
total = len(target) - ignore.sum().item()
|
||||
target = target.masked_fill(ignore, 0) # avoid -1 index
|
||||
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
||||
kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
|
||||
denom = total if self.normalize_length else batch_size
|
||||
return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom
|
||||
|
||||
|
||||
class SequenceBinaryCrossEntropy(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
normalize_length=False,
|
||||
criterion=nn.BCEWithLogitsLoss(reduction="none")
|
||||
):
|
||||
super().__init__()
|
||||
self.normalize_length = normalize_length
|
||||
self.criterion = criterion
|
||||
|
||||
def forward(self, pred, label, lengths):
|
||||
pad_mask = make_pad_mask(lengths, maxlen=pred.shape[1])
|
||||
loss = self.criterion(pred, label)
|
||||
denom = (~pad_mask).sum() if self.normalize_length else pred.shape[0]
|
||||
return loss.masked_fill(pad_mask, 0).sum() / denom
|
||||
Reference in New Issue
Block a user