mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
340
funasr_local/layers/mask_along_axis.py
Normal file
340
funasr_local/layers/mask_along_axis.py
Normal file
@@ -0,0 +1,340 @@
|
||||
import math
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
from typing import Sequence
|
||||
from typing import Union
|
||||
|
||||
|
||||
def mask_along_axis(
|
||||
spec: torch.Tensor,
|
||||
spec_lengths: torch.Tensor,
|
||||
mask_width_range: Sequence[int] = (0, 30),
|
||||
dim: int = 1,
|
||||
num_mask: int = 2,
|
||||
replace_with_zero: bool = True,
|
||||
):
|
||||
"""Apply mask along the specified direction.
|
||||
|
||||
Args:
|
||||
spec: (Batch, Length, Freq)
|
||||
spec_lengths: (Length): Not using lengths in this implementation
|
||||
mask_width_range: Select the width randomly between this range
|
||||
"""
|
||||
|
||||
org_size = spec.size()
|
||||
if spec.dim() == 4:
|
||||
# spec: (Batch, Channel, Length, Freq) -> (Batch * Channel, Length, Freq)
|
||||
spec = spec.view(-1, spec.size(2), spec.size(3))
|
||||
|
||||
B = spec.shape[0]
|
||||
# D = Length or Freq
|
||||
D = spec.shape[dim]
|
||||
# mask_length: (B, num_mask, 1)
|
||||
mask_length = torch.randint(
|
||||
mask_width_range[0],
|
||||
mask_width_range[1],
|
||||
(B, num_mask),
|
||||
device=spec.device,
|
||||
).unsqueeze(2)
|
||||
|
||||
# mask_pos: (B, num_mask, 1)
|
||||
mask_pos = torch.randint(
|
||||
0, max(1, D - mask_length.max()), (B, num_mask), device=spec.device
|
||||
).unsqueeze(2)
|
||||
|
||||
# aran: (1, 1, D)
|
||||
aran = torch.arange(D, device=spec.device)[None, None, :]
|
||||
# mask: (Batch, num_mask, D)
|
||||
mask = (mask_pos <= aran) * (aran < (mask_pos + mask_length))
|
||||
# Multiply masks: (Batch, num_mask, D) -> (Batch, D)
|
||||
mask = mask.any(dim=1)
|
||||
if dim == 1:
|
||||
# mask: (Batch, Length, 1)
|
||||
mask = mask.unsqueeze(2)
|
||||
elif dim == 2:
|
||||
# mask: (Batch, 1, Freq)
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
if replace_with_zero:
|
||||
value = 0.0
|
||||
else:
|
||||
value = spec.mean()
|
||||
|
||||
if spec.requires_grad:
|
||||
spec = spec.masked_fill(mask, value)
|
||||
else:
|
||||
spec = spec.masked_fill_(mask, value)
|
||||
spec = spec.view(*org_size)
|
||||
return spec, spec_lengths
|
||||
|
||||
def mask_along_axis_lfr(
|
||||
spec: torch.Tensor,
|
||||
spec_lengths: torch.Tensor,
|
||||
mask_width_range: Sequence[int] = (0, 30),
|
||||
dim: int = 1,
|
||||
num_mask: int = 2,
|
||||
replace_with_zero: bool = True,
|
||||
lfr_rate: int = 1,
|
||||
):
|
||||
"""Apply mask along the specified direction.
|
||||
|
||||
Args:
|
||||
spec: (Batch, Length, Freq)
|
||||
spec_lengths: (Length): Not using lengths in this implementation
|
||||
mask_width_range: Select the width randomly between this range
|
||||
lfr_rate:low frame rate
|
||||
"""
|
||||
|
||||
org_size = spec.size()
|
||||
if spec.dim() == 4:
|
||||
# spec: (Batch, Channel, Length, Freq) -> (Batch * Channel, Length, Freq)
|
||||
spec = spec.view(-1, spec.size(2), spec.size(3))
|
||||
|
||||
B = spec.shape[0]
|
||||
# D = Length or Freq
|
||||
D = spec.shape[dim] // lfr_rate
|
||||
# mask_length: (B, num_mask, 1)
|
||||
mask_length = torch.randint(
|
||||
mask_width_range[0],
|
||||
mask_width_range[1],
|
||||
(B, num_mask),
|
||||
device=spec.device,
|
||||
).unsqueeze(2)
|
||||
if lfr_rate > 1:
|
||||
mask_length = mask_length.repeat(1, lfr_rate, 1)
|
||||
# mask_pos: (B, num_mask, 1)
|
||||
mask_pos = torch.randint(
|
||||
0, max(1, D - mask_length.max()), (B, num_mask), device=spec.device
|
||||
).unsqueeze(2)
|
||||
if lfr_rate > 1:
|
||||
mask_pos_raw = mask_pos.clone()
|
||||
mask_pos = torch.zeros((B, 0, 1), device=spec.device, dtype=torch.int32)
|
||||
for i in range(lfr_rate):
|
||||
mask_pos_i = mask_pos_raw + D * i
|
||||
mask_pos = torch.cat((mask_pos, mask_pos_i), dim=1)
|
||||
# aran: (1, 1, D)
|
||||
D = spec.shape[dim]
|
||||
aran = torch.arange(D, device=spec.device)[None, None, :]
|
||||
# mask: (Batch, num_mask, D)
|
||||
mask = (mask_pos <= aran) * (aran < (mask_pos + mask_length))
|
||||
# Multiply masks: (Batch, num_mask, D) -> (Batch, D)
|
||||
mask = mask.any(dim=1)
|
||||
if dim == 1:
|
||||
# mask: (Batch, Length, 1)
|
||||
mask = mask.unsqueeze(2)
|
||||
elif dim == 2:
|
||||
# mask: (Batch, 1, Freq)
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
if replace_with_zero:
|
||||
value = 0.0
|
||||
else:
|
||||
value = spec.mean()
|
||||
|
||||
if spec.requires_grad:
|
||||
spec = spec.masked_fill(mask, value)
|
||||
else:
|
||||
spec = spec.masked_fill_(mask, value)
|
||||
spec = spec.view(*org_size)
|
||||
return spec, spec_lengths
|
||||
|
||||
|
||||
class MaskAlongAxis(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
mask_width_range: Union[int, Sequence[int]] = (0, 30),
|
||||
num_mask: int = 2,
|
||||
dim: Union[int, str] = "time",
|
||||
replace_with_zero: bool = True,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if isinstance(mask_width_range, int):
|
||||
mask_width_range = (0, mask_width_range)
|
||||
if len(mask_width_range) != 2:
|
||||
raise TypeError(
|
||||
f"mask_width_range must be a tuple of int and int values: "
|
||||
f"{mask_width_range}",
|
||||
)
|
||||
|
||||
assert mask_width_range[1] > mask_width_range[0]
|
||||
if isinstance(dim, str):
|
||||
if dim == "time":
|
||||
dim = 1
|
||||
elif dim == "freq":
|
||||
dim = 2
|
||||
else:
|
||||
raise ValueError("dim must be int, 'time' or 'freq'")
|
||||
if dim == 1:
|
||||
self.mask_axis = "time"
|
||||
elif dim == 2:
|
||||
self.mask_axis = "freq"
|
||||
else:
|
||||
self.mask_axis = "unknown"
|
||||
|
||||
super().__init__()
|
||||
self.mask_width_range = mask_width_range
|
||||
self.num_mask = num_mask
|
||||
self.dim = dim
|
||||
self.replace_with_zero = replace_with_zero
|
||||
|
||||
def extra_repr(self):
|
||||
return (
|
||||
f"mask_width_range={self.mask_width_range}, "
|
||||
f"num_mask={self.num_mask}, axis={self.mask_axis}"
|
||||
)
|
||||
|
||||
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
spec: (Batch, Length, Freq)
|
||||
"""
|
||||
|
||||
return mask_along_axis(
|
||||
spec,
|
||||
spec_lengths,
|
||||
mask_width_range=self.mask_width_range,
|
||||
dim=self.dim,
|
||||
num_mask=self.num_mask,
|
||||
replace_with_zero=self.replace_with_zero,
|
||||
)
|
||||
|
||||
|
||||
class MaskAlongAxisVariableMaxWidth(torch.nn.Module):
|
||||
"""Mask input spec along a specified axis with variable maximum width.
|
||||
|
||||
Formula:
|
||||
max_width = max_width_ratio * seq_len
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mask_width_ratio_range: Union[float, Sequence[float]] = (0.0, 0.05),
|
||||
num_mask: int = 2,
|
||||
dim: Union[int, str] = "time",
|
||||
replace_with_zero: bool = True,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if isinstance(mask_width_ratio_range, float):
|
||||
mask_width_ratio_range = (0.0, mask_width_ratio_range)
|
||||
if len(mask_width_ratio_range) != 2:
|
||||
raise TypeError(
|
||||
f"mask_width_ratio_range must be a tuple of float and float values: "
|
||||
f"{mask_width_ratio_range}",
|
||||
)
|
||||
|
||||
assert mask_width_ratio_range[1] > mask_width_ratio_range[0]
|
||||
if isinstance(dim, str):
|
||||
if dim == "time":
|
||||
dim = 1
|
||||
elif dim == "freq":
|
||||
dim = 2
|
||||
else:
|
||||
raise ValueError("dim must be int, 'time' or 'freq'")
|
||||
if dim == 1:
|
||||
self.mask_axis = "time"
|
||||
elif dim == 2:
|
||||
self.mask_axis = "freq"
|
||||
else:
|
||||
self.mask_axis = "unknown"
|
||||
|
||||
super().__init__()
|
||||
self.mask_width_ratio_range = mask_width_ratio_range
|
||||
self.num_mask = num_mask
|
||||
self.dim = dim
|
||||
self.replace_with_zero = replace_with_zero
|
||||
|
||||
def extra_repr(self):
|
||||
return (
|
||||
f"mask_width_ratio_range={self.mask_width_ratio_range}, "
|
||||
f"num_mask={self.num_mask}, axis={self.mask_axis}"
|
||||
)
|
||||
|
||||
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
spec: (Batch, Length, Freq)
|
||||
"""
|
||||
|
||||
max_seq_len = spec.shape[self.dim]
|
||||
min_mask_width = math.floor(max_seq_len * self.mask_width_ratio_range[0])
|
||||
min_mask_width = max([0, min_mask_width])
|
||||
max_mask_width = math.floor(max_seq_len * self.mask_width_ratio_range[1])
|
||||
max_mask_width = min([max_seq_len, max_mask_width])
|
||||
|
||||
if max_mask_width > min_mask_width:
|
||||
return mask_along_axis(
|
||||
spec,
|
||||
spec_lengths,
|
||||
mask_width_range=(min_mask_width, max_mask_width),
|
||||
dim=self.dim,
|
||||
num_mask=self.num_mask,
|
||||
replace_with_zero=self.replace_with_zero,
|
||||
)
|
||||
return spec, spec_lengths
|
||||
|
||||
class MaskAlongAxisLFR(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
mask_width_range: Union[int, Sequence[int]] = (0, 30),
|
||||
num_mask: int = 2,
|
||||
dim: Union[int, str] = "time",
|
||||
replace_with_zero: bool = True,
|
||||
lfr_rate: int = 1,
|
||||
):
|
||||
assert check_argument_types()
|
||||
if isinstance(mask_width_range, int):
|
||||
mask_width_range = (0, mask_width_range)
|
||||
if len(mask_width_range) != 2:
|
||||
raise TypeError(
|
||||
f"mask_width_range must be a tuple of int and int values: "
|
||||
f"{mask_width_range}",
|
||||
)
|
||||
|
||||
assert mask_width_range[1] > mask_width_range[0]
|
||||
if isinstance(dim, str):
|
||||
if dim == "time":
|
||||
dim = 1
|
||||
lfr_rate = 1
|
||||
elif dim == "freq":
|
||||
dim = 2
|
||||
else:
|
||||
raise ValueError("dim must be int, 'time' or 'freq'")
|
||||
if dim == 1:
|
||||
self.mask_axis = "time"
|
||||
lfr_rate = 1
|
||||
elif dim == 2:
|
||||
self.mask_axis = "freq"
|
||||
else:
|
||||
self.mask_axis = "unknown"
|
||||
|
||||
super().__init__()
|
||||
self.mask_width_range = mask_width_range
|
||||
self.num_mask = num_mask
|
||||
self.dim = dim
|
||||
self.replace_with_zero = replace_with_zero
|
||||
self.lfr_rate = lfr_rate
|
||||
|
||||
def extra_repr(self):
|
||||
return (
|
||||
f"mask_width_range={self.mask_width_range}, "
|
||||
f"num_mask={self.num_mask}, axis={self.mask_axis}"
|
||||
)
|
||||
|
||||
def forward(self, spec: torch.Tensor, spec_lengths: torch.Tensor = None):
|
||||
"""Forward function.
|
||||
|
||||
Args:
|
||||
spec: (Batch, Length, Freq)
|
||||
"""
|
||||
|
||||
return mask_along_axis_lfr(
|
||||
spec,
|
||||
spec_lengths,
|
||||
mask_width_range=self.mask_width_range,
|
||||
dim=self.dim,
|
||||
num_mask=self.num_mask,
|
||||
replace_with_zero=self.replace_with_zero,
|
||||
lfr_rate=self.lfr_rate,
|
||||
)
|
||||
Reference in New Issue
Block a user