mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
82
funasr_local/layers/label_aggregation.py
Normal file
82
funasr_local/layers/label_aggregation.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
|
||||
from funasr_local.modules.nets_utils import make_pad_mask
|
||||
|
||||
|
||||
class LabelAggregate(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
win_length: int = 512,
|
||||
hop_length: int = 128,
|
||||
center: bool = True,
|
||||
):
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
|
||||
self.win_length = win_length
|
||||
self.hop_length = hop_length
|
||||
self.center = center
|
||||
|
||||
def extra_repr(self):
|
||||
return (
|
||||
f"win_length={self.win_length}, "
|
||||
f"hop_length={self.hop_length}, "
|
||||
f"center={self.center}, "
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, input: torch.Tensor, ilens: torch.Tensor = None
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
"""LabelAggregate forward function.
|
||||
|
||||
Args:
|
||||
input: (Batch, Nsamples, Label_dim)
|
||||
ilens: (Batch)
|
||||
Returns:
|
||||
output: (Batch, Frames, Label_dim)
|
||||
|
||||
"""
|
||||
bs = input.size(0)
|
||||
max_length = input.size(1)
|
||||
label_dim = input.size(2)
|
||||
|
||||
# NOTE(jiatong):
|
||||
# The default behaviour of label aggregation is compatible with
|
||||
# torch.stft about framing and padding.
|
||||
|
||||
# Step1: center padding
|
||||
if self.center:
|
||||
pad = self.win_length // 2
|
||||
max_length = max_length + 2 * pad
|
||||
input = torch.nn.functional.pad(input, (0, 0, pad, pad), "constant", 0)
|
||||
input[:, :pad, :] = input[:, pad : (2 * pad), :]
|
||||
input[:, (max_length - pad) : max_length, :] = input[
|
||||
:, (max_length - 2 * pad) : (max_length - pad), :
|
||||
]
|
||||
nframe = (max_length - self.win_length) // self.hop_length + 1
|
||||
|
||||
# Step2: framing
|
||||
output = input.as_strided(
|
||||
(bs, nframe, self.win_length, label_dim),
|
||||
(max_length * label_dim, self.hop_length * label_dim, label_dim, 1),
|
||||
)
|
||||
|
||||
# Step3: aggregate label
|
||||
output = torch.gt(output.sum(dim=2, keepdim=False), self.win_length // 2)
|
||||
output = output.float()
|
||||
|
||||
# Step4: process lengths
|
||||
if ilens is not None:
|
||||
if self.center:
|
||||
pad = self.win_length // 2
|
||||
ilens = ilens + 2 * pad
|
||||
|
||||
olens = (ilens - self.win_length) // self.hop_length + 1
|
||||
output.masked_fill_(make_pad_mask(olens, output, 1), 0.0)
|
||||
else:
|
||||
olens = None
|
||||
|
||||
return output.to(input.dtype), olens
|
||||
Reference in New Issue
Block a user