mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
121
funasr_local/layers/global_mvn.py
Normal file
121
funasr_local/layers/global_mvn.py
Normal file
@@ -0,0 +1,121 @@
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.modules.nets_utils import make_pad_mask
|
||||
from funasr_local.layers.abs_normalize import AbsNormalize
|
||||
from funasr_local.layers.inversible_interface import InversibleInterface
|
||||
|
||||
|
||||
class GlobalMVN(AbsNormalize, InversibleInterface):
|
||||
"""Apply global mean and variance normalization
|
||||
|
||||
TODO(kamo): Make this class portable somehow
|
||||
|
||||
Args:
|
||||
stats_file: npy file
|
||||
norm_means: Apply mean normalization
|
||||
norm_vars: Apply var normalization
|
||||
eps:
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
stats_file: Union[Path, str],
|
||||
norm_means: bool = True,
|
||||
norm_vars: bool = True,
|
||||
eps: float = 1.0e-20,
|
||||
):
|
||||
assert check_argument_types()
|
||||
super().__init__()
|
||||
self.norm_means = norm_means
|
||||
self.norm_vars = norm_vars
|
||||
self.eps = eps
|
||||
stats_file = Path(stats_file)
|
||||
|
||||
self.stats_file = stats_file
|
||||
stats = np.load(stats_file)
|
||||
if isinstance(stats, np.ndarray):
|
||||
# Kaldi like stats
|
||||
count = stats[0].flatten()[-1]
|
||||
mean = stats[0, :-1] / count
|
||||
var = stats[1, :-1] / count - mean * mean
|
||||
else:
|
||||
# New style: Npz file
|
||||
count = stats["count"]
|
||||
sum_v = stats["sum"]
|
||||
sum_square_v = stats["sum_square"]
|
||||
mean = sum_v / count
|
||||
var = sum_square_v / count - mean * mean
|
||||
std = np.sqrt(np.maximum(var, eps))
|
||||
|
||||
self.register_buffer("mean", torch.from_numpy(mean))
|
||||
self.register_buffer("std", torch.from_numpy(std))
|
||||
|
||||
def extra_repr(self):
|
||||
return (
|
||||
f"stats_file={self.stats_file}, "
|
||||
f"norm_means={self.norm_means}, norm_vars={self.norm_vars}"
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, ilens: torch.Tensor = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Forward function
|
||||
|
||||
Args:
|
||||
x: (B, L, ...)
|
||||
ilens: (B,)
|
||||
"""
|
||||
if ilens is None:
|
||||
ilens = x.new_full([x.size(0)], x.size(1))
|
||||
norm_means = self.norm_means
|
||||
norm_vars = self.norm_vars
|
||||
self.mean = self.mean.to(x.device, x.dtype)
|
||||
self.std = self.std.to(x.device, x.dtype)
|
||||
mask = make_pad_mask(ilens, x, 1)
|
||||
|
||||
# feat: (B, T, D)
|
||||
if norm_means:
|
||||
if x.requires_grad:
|
||||
x = x - self.mean
|
||||
else:
|
||||
x -= self.mean
|
||||
if x.requires_grad:
|
||||
x = x.masked_fill(mask, 0.0)
|
||||
else:
|
||||
x.masked_fill_(mask, 0.0)
|
||||
|
||||
if norm_vars:
|
||||
x /= self.std
|
||||
|
||||
return x, ilens
|
||||
|
||||
def inverse(
|
||||
self, x: torch.Tensor, ilens: torch.Tensor = None
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if ilens is None:
|
||||
ilens = x.new_full([x.size(0)], x.size(1))
|
||||
norm_means = self.norm_means
|
||||
norm_vars = self.norm_vars
|
||||
self.mean = self.mean.to(x.device, x.dtype)
|
||||
self.std = self.std.to(x.device, x.dtype)
|
||||
mask = make_pad_mask(ilens, x, 1)
|
||||
|
||||
if x.requires_grad:
|
||||
x = x.masked_fill(mask, 0.0)
|
||||
else:
|
||||
x.masked_fill_(mask, 0.0)
|
||||
|
||||
if norm_vars:
|
||||
x *= self.std
|
||||
|
||||
# feat: (B, T, D)
|
||||
if norm_means:
|
||||
x += self.mean
|
||||
x.masked_fill_(make_pad_mask(ilens, x, 1), 0.0)
|
||||
return x, ilens
|
||||
Reference in New Issue
Block a user