add files

This commit is contained in:
烨玮
2025-02-20 12:17:03 +08:00
parent a21dd4555c
commit edd008441b
667 changed files with 473123 additions and 0 deletions

View File

@@ -0,0 +1,105 @@
import torch
import torch.nn as nn
from funasr_local.export.utils.torch_function import MakePadMask
from funasr_local.export.utils.torch_function import sequence_mask
from funasr_local.modules.attention import MultiHeadedAttentionSANM
from funasr_local.export.models.modules.multihead_att import MultiHeadedAttentionSANM as MultiHeadedAttentionSANM_export
from funasr_local.export.models.modules.encoder_layer import EncoderLayerSANM as EncoderLayerSANM_export
from funasr_local.export.models.modules.encoder_layer import EncoderLayerConformer as EncoderLayerConformer_export
from funasr_local.modules.positionwise_feed_forward import PositionwiseFeedForward
from funasr_local.export.models.modules.feedforward import PositionwiseFeedForward as PositionwiseFeedForward_export
from funasr_local.export.models.encoder.sanm_encoder import SANMEncoder
from funasr_local.modules.attention import RelPositionMultiHeadedAttention
# from funasr_local.export.models.modules.multihead_att import RelPositionMultiHeadedAttention as RelPositionMultiHeadedAttention_export
from funasr_local.export.models.modules.multihead_att import OnnxRelPosMultiHeadedAttention as RelPositionMultiHeadedAttention_export
class ConformerEncoder(nn.Module):
def __init__(
self,
model,
max_seq_len=512,
feats_dim=560,
model_name='encoder',
onnx: bool = True,
):
super().__init__()
self.embed = model.embed
self.model = model
self.feats_dim = feats_dim
self._output_size = model._output_size
if onnx:
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
else:
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
for i, d in enumerate(self.model.encoders):
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
if isinstance(d.self_attn, RelPositionMultiHeadedAttention):
d.self_attn = RelPositionMultiHeadedAttention_export(d.self_attn)
if isinstance(d.feed_forward, PositionwiseFeedForward):
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
self.model.encoders[i] = EncoderLayerConformer_export(d)
self.model_name = model_name
self.num_heads = model.encoders[0].self_attn.h
self.hidden_size = model.encoders[0].self_attn.linear_out.out_features
def prepare_mask(self, mask):
if len(mask.shape) == 2:
mask = 1 - mask[:, None, None, :]
elif len(mask.shape) == 3:
mask = 1 - mask[:, None, :]
return mask * -10000.0
def forward(self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
):
mask = self.make_pad_mask(speech_lengths)
mask = self.prepare_mask(mask)
if self.embed is None:
xs_pad = speech
else:
xs_pad = self.embed(speech)
encoder_outs = self.model.encoders(xs_pad, mask)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
if isinstance(xs_pad, tuple):
xs_pad = xs_pad[0]
xs_pad = self.model.after_norm(xs_pad)
return xs_pad, speech_lengths
def get_output_size(self):
return self.model.encoders[0].size
def get_dummy_inputs(self):
feats = torch.randn(1, 100, self.feats_dim)
return (feats)
def get_input_names(self):
return ['feats']
def get_output_names(self):
return ['encoder_out', 'encoder_out_lens', 'predictor_weight']
def get_dynamic_axes(self):
return {
'feats': {
1: 'feats_length'
},
'encoder_out': {
1: 'enc_out_length'
},
'predictor_weight':{
1: 'pre_out_length'
}
}

View File

@@ -0,0 +1,296 @@
from typing import Tuple, Dict
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from funasr_local.models.encoder.fsmn_encoder import BasicBlock
class LinearTransform(nn.Module):
def __init__(self, input_dim, output_dim):
super(LinearTransform, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.linear = nn.Linear(input_dim, output_dim, bias=False)
def forward(self, input):
output = self.linear(input)
return output
class AffineTransform(nn.Module):
def __init__(self, input_dim, output_dim):
super(AffineTransform, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, input):
output = self.linear(input)
return output
class RectifiedLinear(nn.Module):
def __init__(self, input_dim, output_dim):
super(RectifiedLinear, self).__init__()
self.dim = input_dim
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.1)
def forward(self, input):
out = self.relu(input)
return out
class FSMNBlock(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
lorder=None,
rorder=None,
lstride=1,
rstride=1,
):
super(FSMNBlock, self).__init__()
self.dim = input_dim
if lorder is None:
return
self.lorder = lorder
self.rorder = rorder
self.lstride = lstride
self.rstride = rstride
self.conv_left = nn.Conv2d(
self.dim, self.dim, [lorder, 1], dilation=[lstride, 1], groups=self.dim, bias=False)
if self.rorder > 0:
self.conv_right = nn.Conv2d(
self.dim, self.dim, [rorder, 1], dilation=[rstride, 1], groups=self.dim, bias=False)
else:
self.conv_right = None
def forward(self, input: torch.Tensor, cache: torch.Tensor):
x = torch.unsqueeze(input, 1)
x_per = x.permute(0, 3, 2, 1) # B D T C
cache = cache.to(x_per.device)
y_left = torch.cat((cache, x_per), dim=2)
cache = y_left[:, :, -(self.lorder - 1) * self.lstride:, :]
y_left = self.conv_left(y_left)
out = x_per + y_left
if self.conv_right is not None:
# maybe need to check
y_right = F.pad(x_per, [0, 0, 0, self.rorder * self.rstride])
y_right = y_right[:, :, self.rstride:, :]
y_right = self.conv_right(y_right)
out += y_right
out_per = out.permute(0, 3, 2, 1)
output = out_per.squeeze(1)
return output, cache
class BasicBlock_export(nn.Module):
def __init__(self,
model,
):
super(BasicBlock_export, self).__init__()
self.linear = model.linear
self.fsmn_block = model.fsmn_block
self.affine = model.affine
self.relu = model.relu
def forward(self, input: torch.Tensor, in_cache: torch.Tensor):
x = self.linear(input) # B T D
# cache_layer_name = 'cache_layer_{}'.format(self.stack_layer)
# if cache_layer_name not in in_cache:
# in_cache[cache_layer_name] = torch.zeros(x1.shape[0], x1.shape[-1], (self.lorder - 1) * self.lstride, 1)
x, out_cache = self.fsmn_block(x, in_cache)
x = self.affine(x)
x = self.relu(x)
return x, out_cache
# class FsmnStack(nn.Sequential):
# def __init__(self, *args):
# super(FsmnStack, self).__init__(*args)
#
# def forward(self, input: torch.Tensor, in_cache: Dict[str, torch.Tensor]):
# x = input
# for module in self._modules.values():
# x = module(x, in_cache)
# return x
'''
FSMN net for keyword spotting
input_dim: input dimension
linear_dim: fsmn input dimensionll
proj_dim: fsmn projection dimension
lorder: fsmn left order
rorder: fsmn right order
num_syn: output dimension
fsmn_layers: no. of sequential fsmn layers
'''
class FSMN(nn.Module):
def __init__(
self, model,
):
super(FSMN, self).__init__()
# self.input_dim = input_dim
# self.input_affine_dim = input_affine_dim
# self.fsmn_layers = fsmn_layers
# self.linear_dim = linear_dim
# self.proj_dim = proj_dim
# self.output_affine_dim = output_affine_dim
# self.output_dim = output_dim
#
# self.in_linear1 = AffineTransform(input_dim, input_affine_dim)
# self.in_linear2 = AffineTransform(input_affine_dim, linear_dim)
# self.relu = RectifiedLinear(linear_dim, linear_dim)
# self.fsmn = FsmnStack(*[BasicBlock(linear_dim, proj_dim, lorder, rorder, lstride, rstride, i) for i in
# range(fsmn_layers)])
# self.out_linear1 = AffineTransform(linear_dim, output_affine_dim)
# self.out_linear2 = AffineTransform(output_affine_dim, output_dim)
# self.softmax = nn.Softmax(dim=-1)
self.in_linear1 = model.in_linear1
self.in_linear2 = model.in_linear2
self.relu = model.relu
# self.fsmn = model.fsmn
self.out_linear1 = model.out_linear1
self.out_linear2 = model.out_linear2
self.softmax = model.softmax
self.fsmn = model.fsmn
for i, d in enumerate(model.fsmn):
if isinstance(d, BasicBlock):
self.fsmn[i] = BasicBlock_export(d)
def fuse_modules(self):
pass
def forward(
self,
input: torch.Tensor,
*args,
):
"""
Args:
input (torch.Tensor): Input tensor (B, T, D)
in_cache: when in_cache is not None, the forward is in streaming. The type of in_cache is a dict, egs,
{'cache_layer_1': torch.Tensor(B, T1, D)}, T1 is equal to self.lorder. It is {} for the 1st frame
"""
x = self.in_linear1(input)
x = self.in_linear2(x)
x = self.relu(x)
# x4 = self.fsmn(x3, in_cache) # self.in_cache will update automatically in self.fsmn
out_caches = list()
for i, d in enumerate(self.fsmn):
in_cache = args[i]
x, out_cache = d(x, in_cache)
out_caches.append(out_cache)
x = self.out_linear1(x)
x = self.out_linear2(x)
x = self.softmax(x)
return x, out_caches
'''
one deep fsmn layer
dimproj: projection dimension, input and output dimension of memory blocks
dimlinear: dimension of mapping layer
lorder: left order
rorder: right order
lstride: left stride
rstride: right stride
'''
class DFSMN(nn.Module):
def __init__(self, dimproj=64, dimlinear=128, lorder=20, rorder=1, lstride=1, rstride=1):
super(DFSMN, self).__init__()
self.lorder = lorder
self.rorder = rorder
self.lstride = lstride
self.rstride = rstride
self.expand = AffineTransform(dimproj, dimlinear)
self.shrink = LinearTransform(dimlinear, dimproj)
self.conv_left = nn.Conv2d(
dimproj, dimproj, [lorder, 1], dilation=[lstride, 1], groups=dimproj, bias=False)
if rorder > 0:
self.conv_right = nn.Conv2d(
dimproj, dimproj, [rorder, 1], dilation=[rstride, 1], groups=dimproj, bias=False)
else:
self.conv_right = None
def forward(self, input):
f1 = F.relu(self.expand(input))
p1 = self.shrink(f1)
x = torch.unsqueeze(p1, 1)
x_per = x.permute(0, 3, 2, 1)
y_left = F.pad(x_per, [0, 0, (self.lorder - 1) * self.lstride, 0])
if self.conv_right is not None:
y_right = F.pad(x_per, [0, 0, 0, (self.rorder) * self.rstride])
y_right = y_right[:, :, self.rstride:, :]
out = x_per + self.conv_left(y_left) + self.conv_right(y_right)
else:
out = x_per + self.conv_left(y_left)
out1 = out.permute(0, 3, 2, 1)
output = input + out1.squeeze(1)
return output
'''
build stacked dfsmn layers
'''
def buildDFSMNRepeats(linear_dim=128, proj_dim=64, lorder=20, rorder=1, fsmn_layers=6):
repeats = [
nn.Sequential(
DFSMN(proj_dim, linear_dim, lorder, rorder, 1, 1))
for i in range(fsmn_layers)
]
return nn.Sequential(*repeats)
if __name__ == '__main__':
fsmn = FSMN(400, 140, 4, 250, 128, 10, 2, 1, 1, 140, 2599)
print(fsmn)
num_params = sum(p.numel() for p in fsmn.parameters())
print('the number of model params: {}'.format(num_params))
x = torch.zeros(128, 200, 400) # batch-size * time * dim
y, _ = fsmn(x) # batch-size * time * dim
print('input shape: {}'.format(x.shape))
print('output shape: {}'.format(y.shape))
print(fsmn.to_kaldi_net())

View File

@@ -0,0 +1,213 @@
import torch
import torch.nn as nn
from funasr_local.export.utils.torch_function import MakePadMask
from funasr_local.export.utils.torch_function import sequence_mask
from funasr_local.modules.attention import MultiHeadedAttentionSANM
from funasr_local.export.models.modules.multihead_att import MultiHeadedAttentionSANM as MultiHeadedAttentionSANM_export
from funasr_local.export.models.modules.encoder_layer import EncoderLayerSANM as EncoderLayerSANM_export
from funasr_local.modules.positionwise_feed_forward import PositionwiseFeedForward
from funasr_local.export.models.modules.feedforward import PositionwiseFeedForward as PositionwiseFeedForward_export
class SANMEncoder(nn.Module):
def __init__(
self,
model,
max_seq_len=512,
feats_dim=560,
model_name='encoder',
onnx: bool = True,
):
super().__init__()
self.embed = model.embed
self.model = model
self.feats_dim = feats_dim
self._output_size = model._output_size
if onnx:
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
else:
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
if hasattr(model, 'encoders0'):
for i, d in enumerate(self.model.encoders0):
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
if isinstance(d.feed_forward, PositionwiseFeedForward):
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
self.model.encoders0[i] = EncoderLayerSANM_export(d)
for i, d in enumerate(self.model.encoders):
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
if isinstance(d.feed_forward, PositionwiseFeedForward):
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
self.model.encoders[i] = EncoderLayerSANM_export(d)
self.model_name = model_name
self.num_heads = model.encoders[0].self_attn.h
self.hidden_size = model.encoders[0].self_attn.linear_out.out_features
def prepare_mask(self, mask):
mask_3d_btd = mask[:, :, None]
if len(mask.shape) == 2:
mask_4d_bhlt = 1 - mask[:, None, None, :]
elif len(mask.shape) == 3:
mask_4d_bhlt = 1 - mask[:, None, :]
mask_4d_bhlt = mask_4d_bhlt * -10000.0
return mask_3d_btd, mask_4d_bhlt
def forward(self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
):
speech = speech * self._output_size ** 0.5
mask = self.make_pad_mask(speech_lengths)
mask = self.prepare_mask(mask)
if self.embed is None:
xs_pad = speech
else:
xs_pad = self.embed(speech)
encoder_outs = self.model.encoders0(xs_pad, mask)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
encoder_outs = self.model.encoders(xs_pad, mask)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
xs_pad = self.model.after_norm(xs_pad)
return xs_pad, speech_lengths
def get_output_size(self):
return self.model.encoders[0].size
def get_dummy_inputs(self):
feats = torch.randn(1, 100, self.feats_dim)
return (feats)
def get_input_names(self):
return ['feats']
def get_output_names(self):
return ['encoder_out', 'encoder_out_lens', 'predictor_weight']
def get_dynamic_axes(self):
return {
'feats': {
1: 'feats_length'
},
'encoder_out': {
1: 'enc_out_length'
},
'predictor_weight':{
1: 'pre_out_length'
}
}
class SANMVadEncoder(nn.Module):
def __init__(
self,
model,
max_seq_len=512,
feats_dim=560,
model_name='encoder',
onnx: bool = True,
):
super().__init__()
self.embed = model.embed
self.model = model
self.feats_dim = feats_dim
self._output_size = model._output_size
if onnx:
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
else:
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
if hasattr(model, 'encoders0'):
for i, d in enumerate(self.model.encoders0):
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
if isinstance(d.feed_forward, PositionwiseFeedForward):
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
self.model.encoders0[i] = EncoderLayerSANM_export(d)
for i, d in enumerate(self.model.encoders):
if isinstance(d.self_attn, MultiHeadedAttentionSANM):
d.self_attn = MultiHeadedAttentionSANM_export(d.self_attn)
if isinstance(d.feed_forward, PositionwiseFeedForward):
d.feed_forward = PositionwiseFeedForward_export(d.feed_forward)
self.model.encoders[i] = EncoderLayerSANM_export(d)
self.model_name = model_name
self.num_heads = model.encoders[0].self_attn.h
self.hidden_size = model.encoders[0].self_attn.linear_out.out_features
def prepare_mask(self, mask, sub_masks):
mask_3d_btd = mask[:, :, None]
mask_4d_bhlt = (1 - sub_masks) * -10000.0
return mask_3d_btd, mask_4d_bhlt
def forward(self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
vad_masks: torch.Tensor,
sub_masks: torch.Tensor,
):
speech = speech * self._output_size ** 0.5
mask = self.make_pad_mask(speech_lengths)
vad_masks = self.prepare_mask(mask, vad_masks)
mask = self.prepare_mask(mask, sub_masks)
if self.embed is None:
xs_pad = speech
else:
xs_pad = self.embed(speech)
encoder_outs = self.model.encoders0(xs_pad, mask)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
# encoder_outs = self.model.encoders(xs_pad, mask)
for layer_idx, encoder_layer in enumerate(self.model.encoders):
if layer_idx == len(self.model.encoders) - 1:
mask = vad_masks
encoder_outs = encoder_layer(xs_pad, mask)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
xs_pad = self.model.after_norm(xs_pad)
return xs_pad, speech_lengths
def get_output_size(self):
return self.model.encoders[0].size
# def get_dummy_inputs(self):
# feats = torch.randn(1, 100, self.feats_dim)
# return (feats)
#
# def get_input_names(self):
# return ['feats']
#
# def get_output_names(self):
# return ['encoder_out', 'encoder_out_lens', 'predictor_weight']
#
# def get_dynamic_axes(self):
# return {
# 'feats': {
# 1: 'feats_length'
# },
# 'encoder_out': {
# 1: 'enc_out_length'
# },
# 'predictor_weight': {
# 1: 'pre_out_length'
# }
#
# }