mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-04 17:39:19 +08:00
add files
This commit is contained in:
159
funasr_local/export/models/decoder/sanm_decoder.py
Normal file
159
funasr_local/export/models/decoder/sanm_decoder.py
Normal file
@@ -0,0 +1,159 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
from funasr_local.export.utils.torch_function import MakePadMask
|
||||
from funasr_local.export.utils.torch_function import sequence_mask
|
||||
|
||||
from funasr_local.modules.attention import MultiHeadedAttentionSANMDecoder
|
||||
from funasr_local.export.models.modules.multihead_att import MultiHeadedAttentionSANMDecoder as MultiHeadedAttentionSANMDecoder_export
|
||||
from funasr_local.modules.attention import MultiHeadedAttentionCrossAtt
|
||||
from funasr_local.export.models.modules.multihead_att import MultiHeadedAttentionCrossAtt as MultiHeadedAttentionCrossAtt_export
|
||||
from funasr_local.modules.positionwise_feed_forward import PositionwiseFeedForwardDecoderSANM
|
||||
from funasr_local.export.models.modules.feedforward import PositionwiseFeedForwardDecoderSANM as PositionwiseFeedForwardDecoderSANM_export
|
||||
from funasr_local.export.models.modules.decoder_layer import DecoderLayerSANM as DecoderLayerSANM_export
|
||||
|
||||
|
||||
class ParaformerSANMDecoder(nn.Module):
|
||||
def __init__(self, model,
|
||||
max_seq_len=512,
|
||||
model_name='decoder',
|
||||
onnx: bool = True,):
|
||||
super().__init__()
|
||||
# self.embed = model.embed #Embedding(model.embed, max_seq_len)
|
||||
self.model = model
|
||||
if onnx:
|
||||
self.make_pad_mask = MakePadMask(max_seq_len, flip=False)
|
||||
else:
|
||||
self.make_pad_mask = sequence_mask(max_seq_len, flip=False)
|
||||
|
||||
for i, d in enumerate(self.model.decoders):
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
|
||||
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
|
||||
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
|
||||
d.self_attn = MultiHeadedAttentionSANMDecoder_export(d.self_attn)
|
||||
if isinstance(d.src_attn, MultiHeadedAttentionCrossAtt):
|
||||
d.src_attn = MultiHeadedAttentionCrossAtt_export(d.src_attn)
|
||||
self.model.decoders[i] = DecoderLayerSANM_export(d)
|
||||
|
||||
if self.model.decoders2 is not None:
|
||||
for i, d in enumerate(self.model.decoders2):
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
|
||||
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
|
||||
if isinstance(d.self_attn, MultiHeadedAttentionSANMDecoder):
|
||||
d.self_attn = MultiHeadedAttentionSANMDecoder_export(d.self_attn)
|
||||
self.model.decoders2[i] = DecoderLayerSANM_export(d)
|
||||
|
||||
for i, d in enumerate(self.model.decoders3):
|
||||
if isinstance(d.feed_forward, PositionwiseFeedForwardDecoderSANM):
|
||||
d.feed_forward = PositionwiseFeedForwardDecoderSANM_export(d.feed_forward)
|
||||
self.model.decoders3[i] = DecoderLayerSANM_export(d)
|
||||
|
||||
self.output_layer = model.output_layer
|
||||
self.after_norm = model.after_norm
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
def prepare_mask(self, mask):
|
||||
mask_3d_btd = mask[:, :, None]
|
||||
if len(mask.shape) == 2:
|
||||
mask_4d_bhlt = 1 - mask[:, None, None, :]
|
||||
elif len(mask.shape) == 3:
|
||||
mask_4d_bhlt = 1 - mask[:, None, :]
|
||||
mask_4d_bhlt = mask_4d_bhlt * -10000.0
|
||||
|
||||
return mask_3d_btd, mask_4d_bhlt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hs_pad: torch.Tensor,
|
||||
hlens: torch.Tensor,
|
||||
ys_in_pad: torch.Tensor,
|
||||
ys_in_lens: torch.Tensor,
|
||||
):
|
||||
|
||||
tgt = ys_in_pad
|
||||
tgt_mask = self.make_pad_mask(ys_in_lens)
|
||||
tgt_mask, _ = self.prepare_mask(tgt_mask)
|
||||
# tgt_mask = myutils.sequence_mask(ys_in_lens, device=tgt.device)[:, :, None]
|
||||
|
||||
memory = hs_pad
|
||||
memory_mask = self.make_pad_mask(hlens)
|
||||
_, memory_mask = self.prepare_mask(memory_mask)
|
||||
# memory_mask = myutils.sequence_mask(hlens, device=memory.device)[:, None, :]
|
||||
|
||||
x = tgt
|
||||
x, tgt_mask, memory, memory_mask, _ = self.model.decoders(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
if self.model.decoders2 is not None:
|
||||
x, tgt_mask, memory, memory_mask, _ = self.model.decoders2(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
x, tgt_mask, memory, memory_mask, _ = self.model.decoders3(
|
||||
x, tgt_mask, memory, memory_mask
|
||||
)
|
||||
x = self.after_norm(x)
|
||||
x = self.output_layer(x)
|
||||
|
||||
return x, ys_in_lens
|
||||
|
||||
|
||||
def get_dummy_inputs(self, enc_size):
|
||||
tgt = torch.LongTensor([0]).unsqueeze(0)
|
||||
memory = torch.randn(1, 100, enc_size)
|
||||
pre_acoustic_embeds = torch.randn(1, 1, enc_size)
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
cache = [
|
||||
torch.zeros((1, self.model.decoders[0].size, self.model.decoders[0].self_attn.kernel_size))
|
||||
for _ in range(cache_num)
|
||||
]
|
||||
return (tgt, memory, pre_acoustic_embeds, cache)
|
||||
|
||||
def is_optimizable(self):
|
||||
return True
|
||||
|
||||
def get_input_names(self):
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
return ['tgt', 'memory', 'pre_acoustic_embeds'] \
|
||||
+ ['cache_%d' % i for i in range(cache_num)]
|
||||
|
||||
def get_output_names(self):
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
return ['y'] \
|
||||
+ ['out_cache_%d' % i for i in range(cache_num)]
|
||||
|
||||
def get_dynamic_axes(self):
|
||||
ret = {
|
||||
'tgt': {
|
||||
0: 'tgt_batch',
|
||||
1: 'tgt_length'
|
||||
},
|
||||
'memory': {
|
||||
0: 'memory_batch',
|
||||
1: 'memory_length'
|
||||
},
|
||||
'pre_acoustic_embeds': {
|
||||
0: 'acoustic_embeds_batch',
|
||||
1: 'acoustic_embeds_length',
|
||||
}
|
||||
}
|
||||
cache_num = len(self.model.decoders) + len(self.model.decoders2)
|
||||
ret.update({
|
||||
'cache_%d' % d: {
|
||||
0: 'cache_%d_batch' % d,
|
||||
2: 'cache_%d_length' % d
|
||||
}
|
||||
for d in range(cache_num)
|
||||
})
|
||||
return ret
|
||||
|
||||
def get_model_config(self, path):
|
||||
return {
|
||||
"dec_type": "XformerDecoder",
|
||||
"model_path": os.path.join(path, f'{self.model_name}.onnx'),
|
||||
"n_layers": len(self.model.decoders) + len(self.model.decoders2),
|
||||
"odim": self.model.decoders[0].size
|
||||
}
|
||||
Reference in New Issue
Block a user