mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
135
funasr_local/datasets/collate_fn.py
Normal file
135
funasr_local/datasets/collate_fn.py
Normal file
@@ -0,0 +1,135 @@
|
||||
from typing import Collection
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
from typeguard import check_return_type
|
||||
|
||||
from funasr_local.modules.nets_utils import pad_list
|
||||
|
||||
|
||||
class CommonCollateFn:
|
||||
"""Functor class of common_collate_fn()"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
float_pad_value: Union[float, int] = 0.0,
|
||||
int_pad_value: int = -32768,
|
||||
not_sequence: Collection[str] = (),
|
||||
max_sample_size=None
|
||||
):
|
||||
assert check_argument_types()
|
||||
self.float_pad_value = float_pad_value
|
||||
self.int_pad_value = int_pad_value
|
||||
self.not_sequence = set(not_sequence)
|
||||
self.max_sample_size = max_sample_size
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__}(float_pad_value={self.float_pad_value}, "
|
||||
f"int_pad_value={self.float_pad_value})"
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, data: Collection[Tuple[str, Dict[str, np.ndarray]]]
|
||||
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
|
||||
return common_collate_fn(
|
||||
data,
|
||||
float_pad_value=self.float_pad_value,
|
||||
int_pad_value=self.int_pad_value,
|
||||
not_sequence=self.not_sequence,
|
||||
)
|
||||
|
||||
|
||||
def common_collate_fn(
|
||||
data: Collection[Tuple[str, Dict[str, np.ndarray]]],
|
||||
float_pad_value: Union[float, int] = 0.0,
|
||||
int_pad_value: int = -32768,
|
||||
not_sequence: Collection[str] = (),
|
||||
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
|
||||
"""Concatenate ndarray-list to an array and convert to torch.Tensor.
|
||||
"""
|
||||
assert check_argument_types()
|
||||
uttids = [u for u, _ in data]
|
||||
data = [d for _, d in data]
|
||||
|
||||
assert all(set(data[0]) == set(d) for d in data), "dict-keys mismatching"
|
||||
assert all(
|
||||
not k.endswith("_lengths") for k in data[0]
|
||||
), f"*_lengths is reserved: {list(data[0])}"
|
||||
|
||||
output = {}
|
||||
for key in data[0]:
|
||||
if data[0][key].dtype.kind == "i":
|
||||
pad_value = int_pad_value
|
||||
else:
|
||||
pad_value = float_pad_value
|
||||
|
||||
array_list = [d[key] for d in data]
|
||||
tensor_list = [torch.from_numpy(a) for a in array_list]
|
||||
tensor = pad_list(tensor_list, pad_value)
|
||||
output[key] = tensor
|
||||
|
||||
if key not in not_sequence:
|
||||
lens = torch.tensor([d[key].shape[0] for d in data], dtype=torch.long)
|
||||
output[key + "_lengths"] = lens
|
||||
|
||||
output = (uttids, output)
|
||||
assert check_return_type(output)
|
||||
return output
|
||||
|
||||
def crop_to_max_size(feature, target_size):
|
||||
size = len(feature)
|
||||
diff = size - target_size
|
||||
if diff <= 0:
|
||||
return feature
|
||||
|
||||
start = np.random.randint(0, diff + 1)
|
||||
end = size - diff + start
|
||||
return feature[start:end]
|
||||
|
||||
|
||||
def clipping_collate_fn(
|
||||
data: Collection[Tuple[str, Dict[str, np.ndarray]]],
|
||||
max_sample_size=None,
|
||||
not_sequence: Collection[str] = (),
|
||||
) -> Tuple[List[str], Dict[str, torch.Tensor]]:
|
||||
# mainly for pre-training
|
||||
assert check_argument_types()
|
||||
uttids = [u for u, _ in data]
|
||||
data = [d for _, d in data]
|
||||
|
||||
assert all(set(data[0]) == set(d) for d in data), "dict-keys mismatching"
|
||||
assert all(
|
||||
not k.endswith("_lengths") for k in data[0]
|
||||
), f"*_lengths is reserved: {list(data[0])}"
|
||||
|
||||
output = {}
|
||||
for key in data[0]:
|
||||
array_list = [d[key] for d in data]
|
||||
tensor_list = [torch.from_numpy(a) for a in array_list]
|
||||
sizes = [len(s) for s in tensor_list]
|
||||
if max_sample_size is None:
|
||||
target_size = min(sizes)
|
||||
else:
|
||||
target_size = min(min(sizes), max_sample_size)
|
||||
tensor = tensor_list[0].new_zeros(len(tensor_list), target_size, tensor_list[0].shape[1])
|
||||
for i, (source, size) in enumerate(zip(tensor_list, sizes)):
|
||||
diff = size - target_size
|
||||
if diff == 0:
|
||||
tensor[i] = source
|
||||
else:
|
||||
tensor[i] = crop_to_max_size(source, target_size)
|
||||
output[key] = tensor
|
||||
|
||||
if key not in not_sequence:
|
||||
lens = torch.tensor([source.shape[0] for source in tensor], dtype=torch.long)
|
||||
output[key + "_lengths"] = lens
|
||||
|
||||
output = (uttids, output)
|
||||
assert check_return_type(output)
|
||||
return output
|
||||
Reference in New Issue
Block a user