mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
311
funasr_local/bin/punctuation_infer_vadrealtime.py
Normal file
311
funasr_local/bin/punctuation_infer_vadrealtime.py
Normal file
@@ -0,0 +1,311 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
import sys
|
||||
from typing import Optional
|
||||
from typing import Sequence
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
from typing import Any
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.datasets.preprocessor import CodeMixTokenizerCommonPreprocessor
|
||||
from funasr_local.utils.cli_utils import get_commandline_args
|
||||
from funasr_local.tasks.punctuation import PunctuationTask
|
||||
from funasr_local.torch_utils.device_funcs import to_device
|
||||
from funasr_local.torch_utils.forward_adaptor import ForwardAdaptor
|
||||
from funasr_local.torch_utils.set_all_random_seed import set_all_random_seed
|
||||
from funasr_local.utils import config_argparse
|
||||
from funasr_local.utils.types import str2triple_str
|
||||
from funasr_local.utils.types import str_or_none
|
||||
from funasr_local.datasets.preprocessor import split_to_mini_sentence
|
||||
|
||||
|
||||
class Text2Punc:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
train_config: Optional[str],
|
||||
model_file: Optional[str],
|
||||
device: str = "cpu",
|
||||
dtype: str = "float32",
|
||||
):
|
||||
# Build Model
|
||||
model, train_args = PunctuationTask.build_model_from_file(train_config, model_file, device)
|
||||
self.device = device
|
||||
# Wrape model to make model.nll() data-parallel
|
||||
self.wrapped_model = ForwardAdaptor(model, "inference")
|
||||
self.wrapped_model.to(dtype=getattr(torch, dtype)).to(device=device).eval()
|
||||
# logging.info(f"Model:\n{model}")
|
||||
self.punc_list = train_args.punc_list
|
||||
self.period = 0
|
||||
for i in range(len(self.punc_list)):
|
||||
if self.punc_list[i] == ",":
|
||||
self.punc_list[i] = ","
|
||||
elif self.punc_list[i] == "?":
|
||||
self.punc_list[i] = "?"
|
||||
elif self.punc_list[i] == "。":
|
||||
self.period = i
|
||||
self.preprocessor = CodeMixTokenizerCommonPreprocessor(
|
||||
train=False,
|
||||
token_type=train_args.token_type,
|
||||
token_list=train_args.token_list,
|
||||
bpemodel=train_args.bpemodel,
|
||||
text_cleaner=train_args.cleaner,
|
||||
g2p_type=train_args.g2p,
|
||||
text_name="text",
|
||||
non_linguistic_symbols=train_args.non_linguistic_symbols,
|
||||
)
|
||||
print("start decoding!!!")
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, text: Union[list, str], cache: list, split_size=20):
|
||||
if cache is not None and len(cache) > 0:
|
||||
precache = "".join(cache)
|
||||
else:
|
||||
precache = ""
|
||||
cache = []
|
||||
data = {"text": precache + text}
|
||||
result = self.preprocessor(data=data, uid="12938712838719")
|
||||
split_text = self.preprocessor.pop_split_text_data(result)
|
||||
mini_sentences = split_to_mini_sentence(split_text, split_size)
|
||||
mini_sentences_id = split_to_mini_sentence(data["text"], split_size)
|
||||
assert len(mini_sentences) == len(mini_sentences_id)
|
||||
cache_sent = []
|
||||
cache_sent_id = torch.from_numpy(np.array([], dtype='int32'))
|
||||
sentence_punc_list = []
|
||||
sentence_words_list= []
|
||||
cache_pop_trigger_limit = 200
|
||||
skip_num = 0
|
||||
for mini_sentence_i in range(len(mini_sentences)):
|
||||
mini_sentence = mini_sentences[mini_sentence_i]
|
||||
mini_sentence_id = mini_sentences_id[mini_sentence_i]
|
||||
mini_sentence = cache_sent + mini_sentence
|
||||
mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0)
|
||||
data = {
|
||||
"text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0),
|
||||
"text_lengths": torch.from_numpy(np.array([len(mini_sentence_id)], dtype='int32')),
|
||||
"vad_indexes": torch.from_numpy(np.array([len(cache)], dtype='int32')),
|
||||
}
|
||||
data = to_device(data, self.device)
|
||||
y, _ = self.wrapped_model(**data)
|
||||
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
|
||||
punctuations = indices
|
||||
if indices.size()[0] != 1:
|
||||
punctuations = torch.squeeze(indices)
|
||||
assert punctuations.size()[0] == len(mini_sentence)
|
||||
|
||||
# Search for the last Period/QuestionMark as cache
|
||||
if mini_sentence_i < len(mini_sentences) - 1:
|
||||
sentenceEnd = -1
|
||||
last_comma_index = -1
|
||||
for i in range(len(punctuations) - 2, 1, -1):
|
||||
if self.punc_list[punctuations[i]] == "。" or self.punc_list[punctuations[i]] == "?":
|
||||
sentenceEnd = i
|
||||
break
|
||||
if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",":
|
||||
last_comma_index = i
|
||||
|
||||
if sentenceEnd < 0 and len(mini_sentence) > cache_pop_trigger_limit and last_comma_index >= 0:
|
||||
# The sentence it too long, cut off at a comma.
|
||||
sentenceEnd = last_comma_index
|
||||
punctuations[sentenceEnd] = self.period
|
||||
cache_sent = mini_sentence[sentenceEnd + 1:]
|
||||
cache_sent_id = mini_sentence_id[sentenceEnd + 1:]
|
||||
mini_sentence = mini_sentence[0:sentenceEnd + 1]
|
||||
punctuations = punctuations[0:sentenceEnd + 1]
|
||||
|
||||
punctuations_np = punctuations.cpu().numpy()
|
||||
sentence_punc_list += [self.punc_list[int(x)] for x in punctuations_np]
|
||||
sentence_words_list += mini_sentence
|
||||
|
||||
assert len(sentence_punc_list) == len(sentence_words_list)
|
||||
words_with_punc = []
|
||||
sentence_punc_list_out = []
|
||||
for i in range(0, len(sentence_words_list)):
|
||||
if i > 0:
|
||||
if len(sentence_words_list[i][0].encode()) == 1 and len(sentence_words_list[i - 1][-1].encode()) == 1:
|
||||
sentence_words_list[i] = " " + sentence_words_list[i]
|
||||
if skip_num < len(cache):
|
||||
skip_num += 1
|
||||
else:
|
||||
words_with_punc.append(sentence_words_list[i])
|
||||
if skip_num >= len(cache):
|
||||
sentence_punc_list_out.append(sentence_punc_list[i])
|
||||
if sentence_punc_list[i] != "_":
|
||||
words_with_punc.append(sentence_punc_list[i])
|
||||
sentence_out = "".join(words_with_punc)
|
||||
|
||||
sentenceEnd = -1
|
||||
for i in range(len(sentence_punc_list) - 2, 1, -1):
|
||||
if sentence_punc_list[i] == "。" or sentence_punc_list[i] == "?":
|
||||
sentenceEnd = i
|
||||
break
|
||||
cache_out = sentence_words_list[sentenceEnd + 1 :]
|
||||
if sentence_out[-1] in self.punc_list:
|
||||
sentence_out = sentence_out[:-1]
|
||||
sentence_punc_list_out[-1] = "_"
|
||||
return sentence_out, sentence_punc_list_out, cache_out
|
||||
|
||||
|
||||
def inference(
|
||||
batch_size: int,
|
||||
dtype: str,
|
||||
ngpu: int,
|
||||
seed: int,
|
||||
num_workers: int,
|
||||
output_dir: str,
|
||||
log_level: Union[int, str],
|
||||
train_config: Optional[str],
|
||||
model_file: Optional[str],
|
||||
key_file: Optional[str] = None,
|
||||
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
||||
raw_inputs: Union[List[Any], bytes, str] = None,
|
||||
cache: List[Any] = None,
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
inference_pipeline = inference_modelscope(
|
||||
output_dir=output_dir,
|
||||
batch_size=batch_size,
|
||||
dtype=dtype,
|
||||
ngpu=ngpu,
|
||||
seed=seed,
|
||||
num_workers=num_workers,
|
||||
log_level=log_level,
|
||||
key_file=key_file,
|
||||
train_config=train_config,
|
||||
model_file=model_file,
|
||||
param_dict=param_dict,
|
||||
**kwargs,
|
||||
)
|
||||
return inference_pipeline(data_path_and_name_and_type, raw_inputs, cache)
|
||||
|
||||
|
||||
def inference_modelscope(
|
||||
batch_size: int,
|
||||
dtype: str,
|
||||
ngpu: int,
|
||||
seed: int,
|
||||
num_workers: int,
|
||||
log_level: Union[int, str],
|
||||
#cache: list,
|
||||
key_file: Optional[str],
|
||||
train_config: Optional[str],
|
||||
model_file: Optional[str],
|
||||
output_dir: Optional[str] = None,
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert check_argument_types()
|
||||
ncpu = kwargs.get("ncpu", 1)
|
||||
torch.set_num_threads(ncpu)
|
||||
|
||||
if ngpu >= 1 and torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# 1. Set random-seed
|
||||
set_all_random_seed(seed)
|
||||
text2punc = Text2Punc(train_config, model_file, device)
|
||||
|
||||
def _forward(
|
||||
data_path_and_name_and_type,
|
||||
raw_inputs: Union[List[Any], bytes, str] = None,
|
||||
output_dir_v2: Optional[str] = None,
|
||||
cache: List[Any] = None,
|
||||
param_dict: dict = None,
|
||||
):
|
||||
results = []
|
||||
split_size = 10
|
||||
cache_in = param_dict["cache"]
|
||||
if raw_inputs != None:
|
||||
line = raw_inputs.strip()
|
||||
key = "demo"
|
||||
if line == "":
|
||||
item = {'key': key, 'value': ""}
|
||||
results.append(item)
|
||||
return results
|
||||
result, _, cache = text2punc(line, cache_in)
|
||||
param_dict["cache"] = cache
|
||||
item = {'key': key, 'value': result}
|
||||
results.append(item)
|
||||
return results
|
||||
|
||||
return results
|
||||
|
||||
return _forward
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
description="Punctuation inference",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log_level",
|
||||
type=lambda x: x.upper(),
|
||||
default="INFO",
|
||||
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
||||
help="The verbose level of logging",
|
||||
)
|
||||
|
||||
parser.add_argument("--output_dir", type=str, required=False)
|
||||
parser.add_argument(
|
||||
"--ngpu",
|
||||
type=int,
|
||||
default=0,
|
||||
help="The number of gpus. 0 indicates CPU mode",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
default="float32",
|
||||
choices=["float16", "float32", "float64"],
|
||||
help="Data type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_workers",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of workers used for DataLoader",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The batch size for inference",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Input data related")
|
||||
group.add_argument("--data_path_and_name_and_type", type=str2triple_str, action="append", required=False)
|
||||
group.add_argument("--raw_inputs", type=str, required=False)
|
||||
group.add_argument("--cache", type=list, required=False)
|
||||
group.add_argument("--param_dict", type=dict, required=False)
|
||||
group.add_argument("--key_file", type=str_or_none)
|
||||
|
||||
group = parser.add_argument_group("The model configuration related")
|
||||
group.add_argument("--train_config", type=str)
|
||||
group.add_argument("--model_file", type=str)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main(cmd=None):
|
||||
print(get_commandline_args(), file=sys.stderr)
|
||||
parser = get_parser()
|
||||
args = parser.parse_args(cmd)
|
||||
kwargs = vars(args)
|
||||
# kwargs.pop("config", None)
|
||||
inference(**kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user