mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
211
funasr_local/bin/lm_calc_perplexity.py
Normal file
211
funasr_local/bin/lm_calc_perplexity.py
Normal file
@@ -0,0 +1,211 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
import sys
|
||||
from typing import Optional
|
||||
from typing import Sequence
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn.parallel import data_parallel
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.utils.cli_utils import get_commandline_args
|
||||
from funasr_local.fileio.datadir_writer import DatadirWriter
|
||||
from funasr_local.tasks.lm import LMTask
|
||||
from funasr_local.torch_utils.device_funcs import to_device
|
||||
from funasr_local.torch_utils.forward_adaptor import ForwardAdaptor
|
||||
from funasr_local.torch_utils.set_all_random_seed import set_all_random_seed
|
||||
from funasr_local.utils import config_argparse
|
||||
from funasr_local.utils.types import float_or_none
|
||||
from funasr_local.utils.types import str2bool
|
||||
from funasr_local.utils.types import str2triple_str
|
||||
from funasr_local.utils.types import str_or_none
|
||||
|
||||
|
||||
def calc_perplexity(
|
||||
output_dir: str,
|
||||
batch_size: int,
|
||||
dtype: str,
|
||||
ngpu: int,
|
||||
seed: int,
|
||||
num_workers: int,
|
||||
log_level: Union[int, str],
|
||||
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
|
||||
key_file: Optional[str],
|
||||
train_config: Optional[str],
|
||||
model_file: Optional[str],
|
||||
log_base: Optional[float],
|
||||
allow_variable_data_keys: bool,
|
||||
):
|
||||
assert check_argument_types()
|
||||
logging.basicConfig(
|
||||
level=log_level,
|
||||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
|
||||
if ngpu >= 1:
|
||||
device = "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# 1. Set random-seed
|
||||
set_all_random_seed(seed)
|
||||
|
||||
# 2. Build LM
|
||||
model, train_args = LMTask.build_model_from_file(config_file=train_config, model_file=model_file, device=device)
|
||||
# Wrape model to make model.nll() data-parallel
|
||||
wrapped_model = ForwardAdaptor(model, "nll")
|
||||
wrapped_model.to(dtype=getattr(torch, dtype)).eval()
|
||||
logging.info(f"Model:\n{model}")
|
||||
|
||||
# 3. Build data-iterator
|
||||
loader = LMTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
batch_size=batch_size,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=LMTask.build_preprocess_fn(train_args, False),
|
||||
collate_fn=LMTask.build_collate_fn(train_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
# 4. Start for-loop
|
||||
with DatadirWriter(output_dir) as writer:
|
||||
total_nll = 0.0
|
||||
total_ntokens = 0
|
||||
for keys, batch in loader:
|
||||
assert isinstance(batch, dict), type(batch)
|
||||
assert all(isinstance(s, str) for s in keys), keys
|
||||
_bs = len(next(iter(batch.values())))
|
||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
|
||||
with torch.no_grad():
|
||||
batch = to_device(batch, device)
|
||||
if ngpu <= 1:
|
||||
# NOTE(kamo): data_parallel also should work with ngpu=1,
|
||||
# but for debuggability it's better to keep this block.
|
||||
nll, lengths = wrapped_model(**batch)
|
||||
else:
|
||||
nll, lengths = data_parallel(
|
||||
wrapped_model, (), range(ngpu), module_kwargs=batch
|
||||
)
|
||||
|
||||
assert _bs == len(nll) == len(lengths), (_bs, len(nll), len(lengths))
|
||||
# nll: (B, L) -> (B,)
|
||||
nll = nll.detach().cpu().numpy().sum(1)
|
||||
# lengths: (B,)
|
||||
lengths = lengths.detach().cpu().numpy()
|
||||
total_nll += nll.sum()
|
||||
total_ntokens += lengths.sum()
|
||||
|
||||
for key, _nll, ntoken in zip(keys, nll, lengths):
|
||||
if log_base is None:
|
||||
utt_ppl = np.exp(_nll / ntoken)
|
||||
else:
|
||||
utt_ppl = log_base ** (_nll / ntoken / np.log(log_base))
|
||||
|
||||
# Write PPL of each utts for debugging or analysis
|
||||
writer["utt2nll"][key] = str(-_nll)
|
||||
writer["utt2ppl"][key] = str(utt_ppl)
|
||||
writer["utt2ntokens"][key] = str(ntoken)
|
||||
|
||||
if log_base is None:
|
||||
ppl = np.exp(total_nll / total_ntokens)
|
||||
else:
|
||||
ppl = log_base ** (total_nll / total_ntokens / np.log(log_base))
|
||||
|
||||
with (Path(output_dir) / "ppl").open("w", encoding="utf-8") as f:
|
||||
f.write(f"{ppl}\n")
|
||||
with (Path(output_dir) / "base").open("w", encoding="utf-8") as f:
|
||||
if log_base is None:
|
||||
_log_base = np.e
|
||||
else:
|
||||
_log_base = log_base
|
||||
f.write(f"{_log_base}\n")
|
||||
logging.info(f"PPL={ppl}")
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
description="Calc perplexity",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
# Note(kamo): Use '_' instead of '-' as separator.
|
||||
# '-' is confusing if written in yaml.
|
||||
parser.add_argument(
|
||||
"--log_level",
|
||||
type=lambda x: x.upper(),
|
||||
default="INFO",
|
||||
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
||||
help="The verbose level of logging",
|
||||
)
|
||||
|
||||
parser.add_argument("--output_dir", type=str, required=True)
|
||||
parser.add_argument(
|
||||
"--ngpu",
|
||||
type=int,
|
||||
default=0,
|
||||
help="The number of gpus. 0 indicates CPU mode",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
default="float32",
|
||||
choices=["float16", "float32", "float64"],
|
||||
help="Data type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_workers",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of workers used for DataLoader",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The batch size for inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--log_base",
|
||||
type=float_or_none,
|
||||
default=None,
|
||||
help="The base of logarithm for Perplexity. "
|
||||
"If None, napier's constant is used.",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Input data related")
|
||||
group.add_argument(
|
||||
"--data_path_and_name_and_type",
|
||||
type=str2triple_str,
|
||||
required=True,
|
||||
action="append",
|
||||
)
|
||||
group.add_argument("--key_file", type=str_or_none)
|
||||
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
||||
|
||||
group = parser.add_argument_group("The model configuration related")
|
||||
group.add_argument("--train_config", type=str)
|
||||
group.add_argument("--model_file", type=str)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def main(cmd=None):
|
||||
print(get_commandline_args(), file=sys.stderr)
|
||||
parser = get_parser()
|
||||
args = parser.parse_args(cmd)
|
||||
kwargs = vars(args)
|
||||
kwargs.pop("config", None)
|
||||
calc_perplexity(**kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user