mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
145
funasr_local/bin/build_trainer.py
Normal file
145
funasr_local/bin/build_trainer.py
Normal file
@@ -0,0 +1,145 @@
|
||||
import os
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
def update_dct(fin_configs, root):
|
||||
if root == {}:
|
||||
return {}
|
||||
for root_key, root_value in root.items():
|
||||
if not isinstance(root[root_key], dict):
|
||||
fin_configs[root_key] = root[root_key]
|
||||
else:
|
||||
if root_key in fin_configs.keys():
|
||||
result = update_dct(fin_configs[root_key], root[root_key])
|
||||
fin_configs[root_key] = result
|
||||
else:
|
||||
fin_configs[root_key] = root[root_key]
|
||||
return fin_configs
|
||||
|
||||
|
||||
def parse_args(mode):
|
||||
if mode == "asr":
|
||||
from funasr_local.tasks.asr import ASRTask as ASRTask
|
||||
elif mode == "paraformer":
|
||||
from funasr_local.tasks.asr import ASRTaskParaformer as ASRTask
|
||||
elif mode == "paraformer_vad_punc":
|
||||
from funasr_local.tasks.asr import ASRTaskParaformer as ASRTask
|
||||
elif mode == "uniasr":
|
||||
from funasr_local.tasks.asr import ASRTaskUniASR as ASRTask
|
||||
elif mode == "mfcca":
|
||||
from funasr_local.tasks.asr import ASRTaskMFCCA as ASRTask
|
||||
elif mode == "tp":
|
||||
from funasr_local.tasks.asr import ASRTaskAligner as ASRTask
|
||||
else:
|
||||
raise ValueError("Unknown mode: {}".format(mode))
|
||||
parser = ASRTask.get_parser()
|
||||
args = parser.parse_args()
|
||||
return args, ASRTask
|
||||
|
||||
|
||||
def build_trainer(modelscope_dict,
|
||||
data_dir,
|
||||
output_dir,
|
||||
train_set="train",
|
||||
dev_set="validation",
|
||||
distributed=False,
|
||||
dataset_type="small",
|
||||
batch_bins=None,
|
||||
max_epoch=None,
|
||||
optim=None,
|
||||
lr=None,
|
||||
scheduler=None,
|
||||
scheduler_conf=None,
|
||||
specaug=None,
|
||||
specaug_conf=None,
|
||||
param_dict=None,
|
||||
**kwargs):
|
||||
mode = modelscope_dict['mode']
|
||||
args, ASRTask = parse_args(mode=mode)
|
||||
# ddp related
|
||||
if args.local_rank is not None:
|
||||
distributed = True
|
||||
else:
|
||||
distributed = False
|
||||
args.local_rank = args.local_rank if args.local_rank is not None else 0
|
||||
local_rank = args.local_rank
|
||||
if "CUDA_VISIBLE_DEVICES" in os.environ.keys():
|
||||
gpu_list = os.environ['CUDA_VISIBLE_DEVICES'].split(",")
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_list[args.local_rank])
|
||||
else:
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.local_rank)
|
||||
|
||||
config = modelscope_dict['am_model_config']
|
||||
finetune_config = modelscope_dict['finetune_config']
|
||||
init_param = modelscope_dict['init_model']
|
||||
cmvn_file = modelscope_dict['cmvn_file']
|
||||
seg_dict_file = modelscope_dict['seg_dict']
|
||||
|
||||
# overwrite parameters
|
||||
with open(config) as f:
|
||||
configs = yaml.safe_load(f)
|
||||
with open(finetune_config) as f:
|
||||
finetune_configs = yaml.safe_load(f)
|
||||
# set data_types
|
||||
if dataset_type == "large":
|
||||
finetune_configs["dataset_conf"]["data_types"] = "sound,text"
|
||||
finetune_configs = update_dct(configs, finetune_configs)
|
||||
for key, value in finetune_configs.items():
|
||||
if hasattr(args, key):
|
||||
setattr(args, key, value)
|
||||
|
||||
# prepare data
|
||||
args.dataset_type = dataset_type
|
||||
if args.dataset_type == "small":
|
||||
args.train_data_path_and_name_and_type = [["{}/{}/wav.scp".format(data_dir, train_set), "speech", "sound"],
|
||||
["{}/{}/text".format(data_dir, train_set), "text", "text"]]
|
||||
args.valid_data_path_and_name_and_type = [["{}/{}/wav.scp".format(data_dir, dev_set), "speech", "sound"],
|
||||
["{}/{}/text".format(data_dir, dev_set), "text", "text"]]
|
||||
elif args.dataset_type == "large":
|
||||
args.train_data_file = None
|
||||
args.valid_data_file = None
|
||||
else:
|
||||
raise ValueError(f"Not supported dataset_type={args.dataset_type}")
|
||||
args.init_param = [init_param]
|
||||
args.cmvn_file = cmvn_file
|
||||
if os.path.exists(seg_dict_file):
|
||||
args.seg_dict_file = seg_dict_file
|
||||
else:
|
||||
args.seg_dict_file = None
|
||||
args.data_dir = data_dir
|
||||
args.train_set = train_set
|
||||
args.dev_set = dev_set
|
||||
args.output_dir = output_dir
|
||||
args.gpu_id = args.local_rank
|
||||
args.config = finetune_config
|
||||
if optim is not None:
|
||||
args.optim = optim
|
||||
if lr is not None:
|
||||
args.optim_conf["lr"] = lr
|
||||
if scheduler is not None:
|
||||
args.scheduler = scheduler
|
||||
if scheduler_conf is not None:
|
||||
args.scheduler_conf = scheduler_conf
|
||||
if specaug is not None:
|
||||
args.specaug = specaug
|
||||
if specaug_conf is not None:
|
||||
args.specaug_conf = specaug_conf
|
||||
if max_epoch is not None:
|
||||
args.max_epoch = max_epoch
|
||||
if batch_bins is not None:
|
||||
if args.dataset_type == "small":
|
||||
args.batch_bins = batch_bins
|
||||
elif args.dataset_type == "large":
|
||||
args.dataset_conf["batch_conf"]["batch_size"] = batch_bins
|
||||
else:
|
||||
raise ValueError(f"Not supported dataset_type={args.dataset_type}")
|
||||
if args.normalize in ["null", "none", "None"]:
|
||||
args.normalize = None
|
||||
if args.patience in ["null", "none", "None"]:
|
||||
args.patience = None
|
||||
args.local_rank = local_rank
|
||||
args.distributed = distributed
|
||||
ASRTask.finetune_args = args
|
||||
|
||||
return ASRTask
|
||||
Reference in New Issue
Block a user