mirror of
https://github.com/HumanAIGC/lite-avatar.git
synced 2026-02-05 18:09:20 +08:00
add files
This commit is contained in:
549
funasr_local/bin/asr_inference_paraformer_vad.py
Normal file
549
funasr_local/bin/asr_inference_paraformer_vad.py
Normal file
@@ -0,0 +1,549 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import json
|
||||
import argparse
|
||||
import logging
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from typing import Sequence
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
from typing import Dict
|
||||
from typing import Any
|
||||
from typing import List
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
from funasr_local.fileio.datadir_writer import DatadirWriter
|
||||
from funasr_local.modules.beam_search.beam_search import BeamSearchPara as BeamSearch
|
||||
from funasr_local.modules.beam_search.beam_search import Hypothesis
|
||||
from funasr_local.modules.scorers.ctc import CTCPrefixScorer
|
||||
from funasr_local.modules.scorers.length_bonus import LengthBonus
|
||||
from funasr_local.modules.subsampling import TooShortUttError
|
||||
from funasr_local.tasks.asr import ASRTaskParaformer as ASRTask
|
||||
from funasr_local.tasks.lm import LMTask
|
||||
from funasr_local.text.build_tokenizer import build_tokenizer
|
||||
from funasr_local.text.token_id_converter import TokenIDConverter
|
||||
from funasr_local.torch_utils.device_funcs import to_device
|
||||
from funasr_local.torch_utils.set_all_random_seed import set_all_random_seed
|
||||
from funasr_local.utils import config_argparse
|
||||
from funasr_local.utils.cli_utils import get_commandline_args
|
||||
from funasr_local.utils.types import str2bool
|
||||
from funasr_local.utils.types import str2triple_str
|
||||
from funasr_local.utils.types import str_or_none
|
||||
from funasr_local.utils import asr_utils, wav_utils, postprocess_utils
|
||||
from funasr_local.models.frontend.wav_frontend import WavFrontend
|
||||
from funasr_local.tasks.vad import VADTask
|
||||
from funasr_local.bin.punctuation_infer import Text2Punc
|
||||
from funasr_local.bin.asr_inference_paraformer_vad_punc import Speech2Text
|
||||
from funasr_local.bin.asr_inference_paraformer_vad_punc import Speech2VadSegment
|
||||
|
||||
|
||||
def inference(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
batch_size: int,
|
||||
beam_size: int,
|
||||
ngpu: int,
|
||||
ctc_weight: float,
|
||||
lm_weight: float,
|
||||
penalty: float,
|
||||
log_level: Union[int, str],
|
||||
data_path_and_name_and_type,
|
||||
asr_train_config: Optional[str],
|
||||
asr_model_file: Optional[str],
|
||||
cmvn_file: Optional[str] = None,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
lm_train_config: Optional[str] = None,
|
||||
lm_file: Optional[str] = None,
|
||||
token_type: Optional[str] = None,
|
||||
key_file: Optional[str] = None,
|
||||
word_lm_train_config: Optional[str] = None,
|
||||
bpemodel: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = False,
|
||||
streaming: bool = False,
|
||||
output_dir: Optional[str] = None,
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
ngram_weight: float = 0.9,
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
vad_infer_config: Optional[str] = None,
|
||||
vad_model_file: Optional[str] = None,
|
||||
vad_cmvn_file: Optional[str] = None,
|
||||
time_stamp_writer: bool = False,
|
||||
punc_infer_config: Optional[str] = None,
|
||||
punc_model_file: Optional[str] = None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
inference_pipeline = inference_modelscope(
|
||||
maxlenratio=maxlenratio,
|
||||
minlenratio=minlenratio,
|
||||
batch_size=batch_size,
|
||||
beam_size=beam_size,
|
||||
ngpu=ngpu,
|
||||
ctc_weight=ctc_weight,
|
||||
lm_weight=lm_weight,
|
||||
penalty=penalty,
|
||||
log_level=log_level,
|
||||
asr_train_config=asr_train_config,
|
||||
asr_model_file=asr_model_file,
|
||||
cmvn_file=cmvn_file,
|
||||
raw_inputs=raw_inputs,
|
||||
lm_train_config=lm_train_config,
|
||||
lm_file=lm_file,
|
||||
token_type=token_type,
|
||||
key_file=key_file,
|
||||
word_lm_train_config=word_lm_train_config,
|
||||
bpemodel=bpemodel,
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
streaming=streaming,
|
||||
output_dir=output_dir,
|
||||
dtype=dtype,
|
||||
seed=seed,
|
||||
ngram_weight=ngram_weight,
|
||||
nbest=nbest,
|
||||
num_workers=num_workers,
|
||||
vad_infer_config=vad_infer_config,
|
||||
vad_model_file=vad_model_file,
|
||||
vad_cmvn_file=vad_cmvn_file,
|
||||
time_stamp_writer=time_stamp_writer,
|
||||
punc_infer_config=punc_infer_config,
|
||||
punc_model_file=punc_model_file,
|
||||
**kwargs,
|
||||
)
|
||||
return inference_pipeline(data_path_and_name_and_type, raw_inputs)
|
||||
|
||||
def inference_modelscope(
|
||||
maxlenratio: float,
|
||||
minlenratio: float,
|
||||
batch_size: int,
|
||||
beam_size: int,
|
||||
ngpu: int,
|
||||
ctc_weight: float,
|
||||
lm_weight: float,
|
||||
penalty: float,
|
||||
log_level: Union[int, str],
|
||||
# data_path_and_name_and_type,
|
||||
asr_train_config: Optional[str],
|
||||
asr_model_file: Optional[str],
|
||||
cmvn_file: Optional[str] = None,
|
||||
lm_train_config: Optional[str] = None,
|
||||
lm_file: Optional[str] = None,
|
||||
token_type: Optional[str] = None,
|
||||
key_file: Optional[str] = None,
|
||||
word_lm_train_config: Optional[str] = None,
|
||||
bpemodel: Optional[str] = None,
|
||||
allow_variable_data_keys: bool = False,
|
||||
output_dir: Optional[str] = None,
|
||||
dtype: str = "float32",
|
||||
seed: int = 0,
|
||||
ngram_weight: float = 0.9,
|
||||
nbest: int = 1,
|
||||
num_workers: int = 1,
|
||||
vad_infer_config: Optional[str] = None,
|
||||
vad_model_file: Optional[str] = None,
|
||||
vad_cmvn_file: Optional[str] = None,
|
||||
time_stamp_writer: bool = True,
|
||||
punc_infer_config: Optional[str] = None,
|
||||
punc_model_file: Optional[str] = None,
|
||||
outputs_dict: Optional[bool] = True,
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
assert check_argument_types()
|
||||
ncpu = kwargs.get("ncpu", 1)
|
||||
torch.set_num_threads(ncpu)
|
||||
|
||||
if word_lm_train_config is not None:
|
||||
raise NotImplementedError("Word LM is not implemented")
|
||||
if ngpu > 1:
|
||||
raise NotImplementedError("only single GPU decoding is supported")
|
||||
|
||||
logging.basicConfig(
|
||||
level=log_level,
|
||||
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
||||
)
|
||||
|
||||
if param_dict is not None:
|
||||
hotword_list_or_file = param_dict.get('hotword')
|
||||
else:
|
||||
hotword_list_or_file = None
|
||||
|
||||
if ngpu >= 1 and torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
# 1. Set random-seed
|
||||
set_all_random_seed(seed)
|
||||
|
||||
# 2. Build speech2vadsegment
|
||||
speech2vadsegment_kwargs = dict(
|
||||
vad_infer_config=vad_infer_config,
|
||||
vad_model_file=vad_model_file,
|
||||
vad_cmvn_file=vad_cmvn_file,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
# logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs))
|
||||
speech2vadsegment = Speech2VadSegment(**speech2vadsegment_kwargs)
|
||||
|
||||
# 3. Build speech2text
|
||||
speech2text_kwargs = dict(
|
||||
asr_train_config=asr_train_config,
|
||||
asr_model_file=asr_model_file,
|
||||
cmvn_file=cmvn_file,
|
||||
lm_train_config=lm_train_config,
|
||||
lm_file=lm_file,
|
||||
token_type=token_type,
|
||||
bpemodel=bpemodel,
|
||||
device=device,
|
||||
maxlenratio=maxlenratio,
|
||||
minlenratio=minlenratio,
|
||||
dtype=dtype,
|
||||
beam_size=beam_size,
|
||||
ctc_weight=ctc_weight,
|
||||
lm_weight=lm_weight,
|
||||
ngram_weight=ngram_weight,
|
||||
penalty=penalty,
|
||||
nbest=nbest,
|
||||
hotword_list_or_file=hotword_list_or_file,
|
||||
)
|
||||
speech2text = Speech2Text(**speech2text_kwargs)
|
||||
text2punc = None
|
||||
if punc_model_file is not None:
|
||||
text2punc = Text2Punc(punc_infer_config, punc_model_file, device=device, dtype=dtype)
|
||||
|
||||
if output_dir is not None:
|
||||
writer = DatadirWriter(output_dir)
|
||||
ibest_writer = writer[f"1best_recog"]
|
||||
ibest_writer["token_list"][""] = " ".join(speech2text.asr_train_args.token_list)
|
||||
|
||||
def _forward(data_path_and_name_and_type,
|
||||
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
|
||||
output_dir_v2: Optional[str] = None,
|
||||
fs: dict = None,
|
||||
param_dict: dict = None,
|
||||
**kwargs,
|
||||
):
|
||||
|
||||
hotword_list_or_file = None
|
||||
if param_dict is not None:
|
||||
hotword_list_or_file = param_dict.get('hotword')
|
||||
|
||||
if 'hotword' in kwargs:
|
||||
hotword_list_or_file = kwargs['hotword']
|
||||
|
||||
if speech2text.hotword_list is None:
|
||||
speech2text.hotword_list = speech2text.generate_hotwords_list(hotword_list_or_file)
|
||||
|
||||
# 3. Build data-iterator
|
||||
if data_path_and_name_and_type is None and raw_inputs is not None:
|
||||
if isinstance(raw_inputs, torch.Tensor):
|
||||
raw_inputs = raw_inputs.numpy()
|
||||
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
|
||||
loader = ASRTask.build_streaming_iterator(
|
||||
data_path_and_name_and_type,
|
||||
dtype=dtype,
|
||||
fs=fs,
|
||||
batch_size=1,
|
||||
key_file=key_file,
|
||||
num_workers=num_workers,
|
||||
preprocess_fn=VADTask.build_preprocess_fn(speech2vadsegment.vad_infer_args, False),
|
||||
collate_fn=VADTask.build_collate_fn(speech2vadsegment.vad_infer_args, False),
|
||||
allow_variable_data_keys=allow_variable_data_keys,
|
||||
inference=True,
|
||||
)
|
||||
|
||||
if param_dict is not None:
|
||||
use_timestamp = param_dict.get('use_timestamp', True)
|
||||
else:
|
||||
use_timestamp = True
|
||||
|
||||
finish_count = 0
|
||||
file_count = 1
|
||||
lfr_factor = 6
|
||||
# 7 .Start for-loop
|
||||
asr_result_list = []
|
||||
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
||||
writer = None
|
||||
if output_path is not None:
|
||||
writer = DatadirWriter(output_path)
|
||||
ibest_writer = writer[f"1best_recog"]
|
||||
|
||||
for keys, batch in loader:
|
||||
assert isinstance(batch, dict), type(batch)
|
||||
assert all(isinstance(s, str) for s in keys), keys
|
||||
_bs = len(next(iter(batch.values())))
|
||||
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
||||
|
||||
vad_results = speech2vadsegment(**batch)
|
||||
fbanks, vadsegments = vad_results[0], vad_results[1]
|
||||
for i, segments in enumerate(vadsegments):
|
||||
result_segments = [["", [], [], ]]
|
||||
for j, segment_idx in enumerate(segments):
|
||||
bed_idx, end_idx = int(segment_idx[0] / 10), int(segment_idx[1] / 10)
|
||||
segment = fbanks[:, bed_idx:end_idx, :].to(device)
|
||||
speech_lengths = torch.Tensor([end_idx - bed_idx]).int().to(device)
|
||||
batch = {"speech": segment, "speech_lengths": speech_lengths, "begin_time": vadsegments[i][j][0],
|
||||
"end_time": vadsegments[i][j][1]}
|
||||
results = speech2text(**batch)
|
||||
if len(results) < 1:
|
||||
continue
|
||||
|
||||
result_cur = [results[0][:-2]]
|
||||
if j == 0:
|
||||
result_segments = result_cur
|
||||
else:
|
||||
result_segments = [[result_segments[0][i] + result_cur[0][i] for i in range(len(result_cur[0]))]]
|
||||
|
||||
key = keys[0]
|
||||
result = result_segments[0]
|
||||
text, token, token_int = result[0], result[1], result[2]
|
||||
time_stamp = None if len(result) < 4 else result[3]
|
||||
|
||||
if use_timestamp and time_stamp is not None:
|
||||
postprocessed_result = postprocess_utils.sentence_postprocess(token, time_stamp)
|
||||
else:
|
||||
postprocessed_result = postprocess_utils.sentence_postprocess(token)
|
||||
text_postprocessed = ""
|
||||
time_stamp_postprocessed = ""
|
||||
text_postprocessed_punc = postprocessed_result
|
||||
if len(postprocessed_result) == 3:
|
||||
text_postprocessed, time_stamp_postprocessed, word_lists = postprocessed_result[0], \
|
||||
postprocessed_result[1], \
|
||||
postprocessed_result[2]
|
||||
else:
|
||||
text_postprocessed, word_lists = postprocessed_result[0], postprocessed_result[1]
|
||||
text_postprocessed_punc = text_postprocessed
|
||||
if len(word_lists) > 0 and text2punc is not None:
|
||||
text_postprocessed_punc, punc_id_list = text2punc(word_lists, 20)
|
||||
|
||||
|
||||
item = {'key': key, 'value': text_postprocessed_punc}
|
||||
if text_postprocessed != "":
|
||||
item['text_postprocessed'] = text_postprocessed
|
||||
if time_stamp_postprocessed != "":
|
||||
item['time_stamp'] = time_stamp_postprocessed
|
||||
|
||||
asr_result_list.append(item)
|
||||
finish_count += 1
|
||||
# asr_utils.print_progress(finish_count / file_count)
|
||||
if writer is not None:
|
||||
# Write the result to each file
|
||||
ibest_writer["token"][key] = " ".join(token)
|
||||
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
|
||||
ibest_writer["vad"][key] = "{}".format(vadsegments)
|
||||
ibest_writer["text"][key] = " ".join(word_lists)
|
||||
ibest_writer["text_with_punc"][key] = text_postprocessed_punc
|
||||
if time_stamp_postprocessed is not None:
|
||||
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
|
||||
|
||||
logging.info("decoding, utt: {}, predictions: {}".format(key, text_postprocessed_punc))
|
||||
|
||||
|
||||
return asr_result_list
|
||||
return _forward
|
||||
|
||||
def get_parser():
|
||||
parser = config_argparse.ArgumentParser(
|
||||
description="ASR Decoding",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
||||
)
|
||||
|
||||
# Note(kamo): Use '_' instead of '-' as separator.
|
||||
# '-' is confusing if written in yaml.
|
||||
parser.add_argument(
|
||||
"--log_level",
|
||||
type=lambda x: x.upper(),
|
||||
default="INFO",
|
||||
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
||||
help="The verbose level of logging",
|
||||
)
|
||||
|
||||
parser.add_argument("--output_dir", type=str, required=True)
|
||||
parser.add_argument(
|
||||
"--ngpu",
|
||||
type=int,
|
||||
default=0,
|
||||
help="The number of gpus. 0 indicates CPU mode",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||||
parser.add_argument(
|
||||
"--dtype",
|
||||
default="float32",
|
||||
choices=["float16", "float32", "float64"],
|
||||
help="Data type",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_workers",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of workers used for DataLoader",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Input data related")
|
||||
group.add_argument(
|
||||
"--data_path_and_name_and_type",
|
||||
type=str2triple_str,
|
||||
required=False,
|
||||
action="append",
|
||||
)
|
||||
group.add_argument("--key_file", type=str_or_none)
|
||||
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
||||
|
||||
group = parser.add_argument_group("The model configuration related")
|
||||
group.add_argument(
|
||||
"--asr_train_config",
|
||||
type=str,
|
||||
help="ASR training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--asr_model_file",
|
||||
type=str,
|
||||
help="ASR model parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--cmvn_file",
|
||||
type=str,
|
||||
help="Global cmvn file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--lm_train_config",
|
||||
type=str,
|
||||
help="LM training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--lm_file",
|
||||
type=str,
|
||||
help="LM parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--word_lm_train_config",
|
||||
type=str,
|
||||
help="Word LM training configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--word_lm_file",
|
||||
type=str,
|
||||
help="Word LM parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--ngram_file",
|
||||
type=str,
|
||||
help="N-gram parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--model_tag",
|
||||
type=str,
|
||||
help="Pretrained model tag. If specify this option, *_train_config and "
|
||||
"*_file will be overwritten",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group("Beam-search related")
|
||||
group.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The batch size for inference",
|
||||
)
|
||||
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
|
||||
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
|
||||
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
|
||||
group.add_argument(
|
||||
"--maxlenratio",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Input length ratio to obtain max output length. "
|
||||
"If maxlenratio=0.0 (default), it uses a end-detect "
|
||||
"function "
|
||||
"to automatically find maximum hypothesis lengths."
|
||||
"If maxlenratio<0.0, its absolute value is interpreted"
|
||||
"as a constant max output length",
|
||||
)
|
||||
group.add_argument(
|
||||
"--minlenratio",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Input length ratio to obtain min output length",
|
||||
)
|
||||
group.add_argument(
|
||||
"--ctc_weight",
|
||||
type=float,
|
||||
default=0.5,
|
||||
help="CTC weight in joint decoding",
|
||||
)
|
||||
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
|
||||
group.add_argument("--ngram_weight", type=float, default=0.9, help="ngram weight")
|
||||
group.add_argument("--streaming", type=str2bool, default=False)
|
||||
group.add_argument("--time_stamp_writer", type=str2bool, default=False)
|
||||
|
||||
group.add_argument(
|
||||
"--frontend_conf",
|
||||
default=None,
|
||||
help="",
|
||||
)
|
||||
group.add_argument("--raw_inputs", type=list, default=None)
|
||||
# example=[{'key':'EdevDEWdIYQ_0021','file':'/mnt/data/jiangyu.xzy/test_data/speech_io/SPEECHIO_ASR_ZH00007_zhibodaihuo/wav/EdevDEWdIYQ_0021.wav'}])
|
||||
|
||||
group = parser.add_argument_group("Text converter related")
|
||||
group.add_argument(
|
||||
"--token_type",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
choices=["char", "bpe", None],
|
||||
help="The token type for ASR model. "
|
||||
"If not given, refers from the training args",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bpemodel",
|
||||
type=str_or_none,
|
||||
default=None,
|
||||
help="The model path of sentencepiece. "
|
||||
"If not given, refers from the training args",
|
||||
)
|
||||
group.add_argument(
|
||||
"--vad_infer_config",
|
||||
type=str,
|
||||
help="VAD infer configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--vad_model_file",
|
||||
type=str,
|
||||
help="VAD model parameter file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--vad_cmvn_file",
|
||||
type=str,
|
||||
help="vad, Global cmvn file",
|
||||
)
|
||||
group.add_argument(
|
||||
"--punc_infer_config",
|
||||
type=str,
|
||||
help="VAD infer configuration",
|
||||
)
|
||||
group.add_argument(
|
||||
"--punc_model_file",
|
||||
type=str,
|
||||
help="VAD model parameter file",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def main(cmd=None):
|
||||
print(get_commandline_args(), file=sys.stderr)
|
||||
parser = get_parser()
|
||||
args = parser.parse_args(cmd)
|
||||
kwargs = vars(args)
|
||||
kwargs.pop("config", None)
|
||||
inference(**kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user