mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-05 01:49:23 +08:00
101 lines
3.0 KiB
Python
101 lines
3.0 KiB
Python
import logging
|
|
import os
|
|
import random
|
|
|
|
import cv2
|
|
import gradio as gr
|
|
from gradio_webrtc import AdditionalOutputs, WebRTC
|
|
from huggingface_hub import hf_hub_download
|
|
from inference import YOLOv10
|
|
from twilio.rest import Client
|
|
|
|
# Configure the root logger to WARNING to suppress debug messages from other libraries
|
|
logging.basicConfig(level=logging.WARNING)
|
|
|
|
# Create a console handler
|
|
console_handler = logging.FileHandler("gradio_webrtc.log")
|
|
console_handler.setLevel(logging.DEBUG)
|
|
|
|
# Create a formatter
|
|
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
|
console_handler.setFormatter(formatter)
|
|
|
|
# Configure the logger for your specific library
|
|
logger = logging.getLogger("gradio_webrtc")
|
|
logger.setLevel(logging.DEBUG)
|
|
logger.addHandler(console_handler)
|
|
|
|
|
|
model_file = hf_hub_download(
|
|
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
|
|
)
|
|
|
|
model = YOLOv10(model_file)
|
|
|
|
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
|
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
|
|
|
if account_sid and auth_token:
|
|
client = Client(account_sid, auth_token)
|
|
|
|
token = client.tokens.create()
|
|
|
|
rtc_configuration = {
|
|
"iceServers": token.ice_servers,
|
|
"iceTransportPolicy": "relay",
|
|
}
|
|
else:
|
|
rtc_configuration = None
|
|
|
|
|
|
def detection(frame, conf_threshold=0.3):
|
|
print("frame.shape", frame.shape)
|
|
frame = cv2.flip(frame, 0)
|
|
return AdditionalOutputs(1)
|
|
|
|
|
|
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
|
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.HTML(
|
|
"""
|
|
<h1 style='text-align: center'>
|
|
YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
|
|
</h1>
|
|
"""
|
|
)
|
|
gr.HTML(
|
|
"""
|
|
<h3 style='text-align: center'>
|
|
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
|
</h3>
|
|
"""
|
|
)
|
|
with gr.Column(elem_classes=["my-column"]):
|
|
with gr.Group(elem_classes=["my-group"]):
|
|
image = WebRTC(
|
|
label="Stream", rtc_configuration=rtc_configuration,
|
|
mode="send",
|
|
track_constraints={"width": {"exact": 800},
|
|
"height": {"exact": 600},
|
|
"aspectRatio": {"exact": 1.33333}
|
|
},
|
|
rtp_params={"degradationPreference": "maintain-resolution"}
|
|
)
|
|
conf_threshold = gr.Slider(
|
|
label="Confidence Threshold",
|
|
minimum=0.0,
|
|
maximum=1.0,
|
|
step=0.05,
|
|
value=0.30,
|
|
)
|
|
number = gr.Number()
|
|
|
|
image.stream(
|
|
fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
|
|
)
|
|
image.on_additional_outputs(lambda n: n, outputs=number)
|
|
|
|
demo.launch()
|