Files
gradio-webrtc/demo/hello_computer/app.py
Freddy Boulton 853d6a06b5 Rebrand to FastRTC (#60)
* Add code

* add code

* add code

* Rename messages

* rename

* add code

* Add demo

* docs + demos + bug fixes

* add code

* styles

* user guide

* Styles

* Add code

* misc docs updates

* print nit

* whisper + pr

* url for images

* whsiper update

* Fix bugs

* remove demo files

* version number

* Fix pypi readme

* Fix

* demos

* Add llama code editor

* Update llama code editor and object detection cookbook

* Add more cookbook demos

* add code

* Fix links for PR deploys

* add code

* Fix the install

* add tts

* TTS docs

* Typo

* Pending bubbles for reply on pause

* Stream redesign (#63)

* better error handling

* Websocket error handling

* add code

---------

Co-authored-by: Freddy Boulton <freddyboulton@hf-freddy.local>

* remove docs from dist

* Some docs typos

* more typos

* upload changes + docs

* docs

* better phone

* update docs

* add code

* Make demos better

* fix docs + websocket start_up

* remove mention of FastAPI app

* fastphone tweaks

* add code

* ReplyOnStopWord fixes

* Fix cookbook

* Fix pypi readme

* add code

* bump versions

* sambanova cookbook

* Fix tags

* Llm voice chat

* kyutai tag

* Add error message to all index.html

* STT module uses Moonshine

* Not required from typing extensions

* fix llm voice chat

* Add vpn warning

* demo fixes

* demos

* Add more ui args and gemini audio-video

* update cookbook

* version 9

---------

Co-authored-by: Freddy Boulton <freddyboulton@hf-freddy.local>
2025-02-24 01:13:42 -05:00

154 lines
4.1 KiB
Python

import base64
import json
import os
from pathlib import Path
import gradio as gr
import numpy as np
import openai
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
AdditionalOutputs,
ReplyOnStopWords,
Stream,
WebRTCError,
get_stt_model,
get_twilio_turn_credentials,
)
from gradio.utils import get_space
from pydantic import BaseModel
load_dotenv()
curr_dir = Path(__file__).parent
client = openai.OpenAI(
api_key=os.environ.get("SAMBANOVA_API_KEY"),
base_url="https://api.sambanova.ai/v1",
)
model = get_stt_model()
def response(
audio: tuple[int, np.ndarray],
gradio_chatbot: list[dict] | None = None,
conversation_state: list[dict] | None = None,
):
gradio_chatbot = gradio_chatbot or []
conversation_state = conversation_state or []
try:
text = model.stt(audio)
print("STT in handler", text)
sample_rate, array = audio
gradio_chatbot.append(
{"role": "user", "content": gr.Audio((sample_rate, array.squeeze()))}
)
yield AdditionalOutputs(gradio_chatbot, conversation_state)
conversation_state.append({"role": "user", "content": text})
request = client.chat.completions.create(
model="Meta-Llama-3.2-3B-Instruct",
messages=conversation_state, # type: ignore
temperature=0.1,
top_p=0.1,
)
response = {"role": "assistant", "content": request.choices[0].message.content}
except Exception as e:
import traceback
traceback.print_exc()
raise WebRTCError(str(e) + "\n" + traceback.format_exc())
conversation_state.append(response)
gradio_chatbot.append(response)
yield AdditionalOutputs(gradio_chatbot, conversation_state)
chatbot = gr.Chatbot(type="messages", value=[])
state = gr.State(value=[])
stream = Stream(
ReplyOnStopWords(
response, # type: ignore
stop_words=["computer"],
input_sample_rate=16000,
),
mode="send",
modality="audio",
additional_inputs=[chatbot, state],
additional_outputs=[chatbot, state],
additional_outputs_handler=lambda *a: (a[2], a[3]),
concurrency_limit=5 if get_space() else None,
time_limit=90 if get_space() else None,
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
)
app = FastAPI()
stream.mount(app)
class Message(BaseModel):
role: str
content: str
class InputData(BaseModel):
webrtc_id: str
chatbot: list[Message]
state: list[Message]
@app.get("/")
async def _():
rtc_config = get_twilio_turn_credentials() if get_space() else None
html_content = (curr_dir / "index.html").read_text()
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
return HTMLResponse(content=html_content)
@app.post("/input_hook")
async def _(data: InputData):
body = data.model_dump()
stream.set_input(data.webrtc_id, body["chatbot"], body["state"])
def audio_to_base64(file_path):
audio_format = "wav"
with open(file_path, "rb") as audio_file:
encoded_audio = base64.b64encode(audio_file.read()).decode("utf-8")
return f"data:audio/{audio_format};base64,{encoded_audio}"
@app.get("/outputs")
async def _(webrtc_id: str):
async def output_stream():
async for output in stream.output_stream(webrtc_id):
chatbot = output.args[0]
state = output.args[1]
data = {
"message": state[-1],
"audio": audio_to_base64(chatbot[-1]["content"].value["path"])
if chatbot[-1]["role"] == "user"
else None,
}
yield f"event: output\ndata: {json.dumps(data)}\n\n"
return StreamingResponse(output_stream(), media_type="text/event-stream")
if __name__ == "__main__":
import os
if (mode := os.getenv("MODE")) == "UI":
stream.ui.launch(server_port=7860)
elif mode == "PHONE":
raise ValueError("Phone mode not supported")
else:
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)