mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-04 17:39:23 +08:00
* Add auto errors * change code --------- Co-authored-by: Freddy Boulton <freddyboulton@hf-freddy.local>
78 lines
2.0 KiB
Python
78 lines
2.0 KiB
Python
import json
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import gradio as gr
|
|
from fastapi import FastAPI
|
|
from fastapi.responses import HTMLResponse
|
|
from fastrtc import Stream, get_twilio_turn_credentials
|
|
from gradio.utils import get_space
|
|
from huggingface_hub import hf_hub_download
|
|
from pydantic import BaseModel, Field
|
|
|
|
try:
|
|
from demo.object_detection.inference import YOLOv10
|
|
except (ImportError, ModuleNotFoundError):
|
|
from inference import YOLOv10
|
|
|
|
|
|
cur_dir = Path(__file__).parent
|
|
|
|
model_file = hf_hub_download(
|
|
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
|
|
)
|
|
|
|
model = YOLOv10(model_file)
|
|
|
|
|
|
def detection(image, conf_threshold=0.3):
|
|
image = cv2.resize(image, (model.input_width, model.input_height))
|
|
print("conf_threshold", conf_threshold)
|
|
new_image = model.detect_objects(image, conf_threshold)
|
|
return cv2.resize(new_image, (500, 500))
|
|
|
|
|
|
stream = Stream(
|
|
handler=detection,
|
|
modality="video",
|
|
mode="send-receive",
|
|
additional_inputs=[gr.Slider(minimum=0, maximum=1, step=0.01, value=0.3)],
|
|
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
|
|
concurrency_limit=2 if get_space() else None,
|
|
)
|
|
|
|
app = FastAPI()
|
|
|
|
stream.mount(app)
|
|
|
|
|
|
@app.get("/")
|
|
async def _():
|
|
rtc_config = get_twilio_turn_credentials() if get_space() else None
|
|
html_content = open(cur_dir / "index.html").read()
|
|
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
|
|
return HTMLResponse(content=html_content)
|
|
|
|
|
|
class InputData(BaseModel):
|
|
webrtc_id: str
|
|
conf_threshold: float = Field(ge=0, le=1)
|
|
|
|
|
|
@app.post("/input_hook")
|
|
async def _(data: InputData):
|
|
stream.set_input(data.webrtc_id, data.conf_threshold)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import os
|
|
|
|
if (mode := os.getenv("MODE")) == "UI":
|
|
stream.ui.launch(server_port=7860)
|
|
elif mode == "PHONE":
|
|
stream.fastphone(host="0.0.0.0", port=7860)
|
|
else:
|
|
import uvicorn
|
|
|
|
uvicorn.run(app, host="0.0.0.0", port=7860)
|