Files
gradio-webrtc/demo/talk_to_llama4/app.py
2025-04-23 16:01:54 -04:00

137 lines
4.1 KiB
Python

import json
import os
from pathlib import Path
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
AdditionalOutputs,
CartesiaTTSOptions,
ReplyOnPause,
Stream,
get_cloudflare_turn_credentials_async,
get_current_context,
get_stt_model,
get_tts_model,
)
from groq import Groq
from numpy.typing import NDArray
curr_dir = Path(__file__).parent
load_dotenv()
tts_model = get_tts_model(
model="cartesia", cartesia_api_key=os.getenv("CARTESIA_API_KEY")
)
groq = Groq(api_key=os.getenv("GROQ_API_KEY"))
stt_model = get_stt_model()
conversations: dict[str, list[dict[str, str]]] = {}
def response(user_audio: tuple[int, NDArray[np.int16]]):
context = get_current_context()
if context.webrtc_id not in conversations:
conversations[context.webrtc_id] = [
{
"role": "system",
"content": (
"You are a helpful assistant that can answer questions and help with tasks."
'Please return a short (that will be converted to audio using a text-to-speech model) response and long response to this question. They can be the same if appropriate. Please return in JSON format\n\n{"short":, "long"}\n\n'
),
}
]
messages = conversations[context.webrtc_id]
transcription = stt_model.stt(user_audio)
messages.append({"role": "user", "content": transcription})
completion = groq.chat.completions.create( # type: ignore
model="meta-llama/llama-4-scout-17b-16e-instruct",
messages=messages, # type: ignore
temperature=1,
max_completion_tokens=1024,
top_p=1,
stream=False,
response_format={"type": "json_object"},
stop=None,
)
response = completion.choices[0].message.content
response = json.loads(response)
short_response = response["short"]
long_response = response["long"]
messages.append({"role": "assistant", "content": long_response})
conversations[context.webrtc_id] = messages
yield from tts_model.stream_tts_sync(
short_response, options=CartesiaTTSOptions(sample_rate=24_000)
)
yield AdditionalOutputs(messages)
stream = Stream(
ReplyOnPause(response),
modality="audio",
mode="send-receive",
additional_outputs=[gr.Chatbot(type="messages")],
additional_outputs_handler=lambda old, new: new,
rtc_configuration=None,
ui_args={"hide_title": True},
)
with gr.Blocks() as demo:
gr.HTML(
f"""
<h1 style='text-align: center; display: flex; align-items: center; justify-content: center;'>
<img src="/gradio_api/file={str((Path(__file__).parent / "AV_Huggy.png").resolve())}" alt="AV Huggy" style="height: 100px; margin-right: 10px"> FastRTC + Cartesia TTS = Blazing Fast LLM Audio
</h1>
"""
)
stream.ui.render()
stream.ui = demo
app = FastAPI()
stream.mount(app)
@app.get("/")
async def _():
rtc_config = await get_cloudflare_turn_credentials_async()
html_content = (curr_dir / "index.html").read_text()
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
return HTMLResponse(content=html_content)
@app.get("/outputs")
async def _(webrtc_id: str):
async def output_stream():
async for output in stream.output_stream(webrtc_id):
state = output.args[0]
for msg in state[-2:]:
data = {
"message": msg,
}
yield f"event: output\ndata: {json.dumps(data)}\n\n"
return StreamingResponse(output_stream(), media_type="text/event-stream")
if __name__ == "__main__":
import os
from pathlib import Path
if (mode := os.getenv("MODE")) == "UI":
stream.ui.launch(
server_port=7860,
allowed_paths=[str((Path(__file__).parent / "AV_Huggy.png").resolve())],
)
elif mode == "PHONE":
raise ValueError("Phone mode not supported")
else:
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)