Files
gradio-webrtc/demo/talk_to_azure_openai/app.py
2025-04-01 14:10:27 -04:00

232 lines
8.6 KiB
Python

import asyncio
import base64
import json
from pathlib import Path
import aiohttp # pip install aiohttp
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
AdditionalOutputs,
AsyncStreamHandler,
Stream,
get_twilio_turn_credentials,
wait_for_item,
)
from gradio.utils import get_space
load_dotenv()
cur_dir = Path(__file__).parent
load_dotenv("key.env")
# sd.default.device = (3, 3) # (Input-Gerät, Output-Gerät)
# print(f"Used Mic: {sd.query_devices(3)['name']}")
# print(f"Used Speaker: {sd.query_devices(3)['name']}")
SAMPLE_RATE = 24000
instruction = """
<Role>
You a helpful assistant.
"""
class AzureAudioHandler(AsyncStreamHandler):
def __init__(self) -> None:
super().__init__(
expected_layout="mono",
output_sample_rate=SAMPLE_RATE,
input_sample_rate=SAMPLE_RATE,
)
self.ws = None
self.session = None
self.output_queue = asyncio.Queue()
# This internal buffer is not used directly in receive_messages.
# Instead, multiple audio chunks are collected in the emit() method.
# If needed, a continuous buffer can also be implemented here.
# self.audio_buffer = bytearray()
def copy(self):
return AzureAudioHandler()
async def start_up(self):
"""Connects to the Azure Real-time Audio API via WebSocket using aiohttp."""
# Replace the following placeholders with your actual Azure values:
azure_api_key = "your-api-key" # e.g., "your-api-key"
azure_resource_name = "your-resource-name" # e.g., "aigdopenai"
deployment_id = "your-deployment-id" # e.g., "gpt-4o-realtime-preview"
api_version = "2024-10-01-preview"
azure_endpoint = (
f"wss://{azure_resource_name}.openai.azure.com/openai/realtime"
f"?api-version={api_version}&deployment={deployment_id}"
)
headers = {"api-key": azure_api_key}
self.session = aiohttp.ClientSession()
self.ws = await self.session.ws_connect(azure_endpoint, headers=headers)
# Send initial session parameters
session_update_message = {
"type": "session.update",
"session": {
"turn_detection": {"type": "server_vad"},
"instructions": instruction,
"voice": "ballad", # Possible voices see https://platform.openai.com/docs/guides/realtime-model-capabilities#voice-options
},
}
await self.ws.send_str(json.dumps(session_update_message))
# Start receiving messages asynchronously
asyncio.create_task(self.receive_messages())
async def receive_messages(self):
"""Handles incoming WebSocket messages and processes them accordingly."""
async for msg in self.ws:
if msg.type == aiohttp.WSMsgType.TEXT:
print("Received event:", msg.data) # Debug output
event = json.loads(msg.data)
event_type = event.get("type")
if event_type in ["final", "response.audio_transcript.done"]:
transcript = event.get("transcript", "")
# Wrap the transcript in an object with a .transcript attribute
class TranscriptEvent:
pass
te = TranscriptEvent()
te.transcript = transcript
await self.output_queue.put(AdditionalOutputs(te))
elif event_type == "partial":
print("Partial transcript:", event.get("transcript", ""))
elif event_type == "response.audio.delta":
audio_message = event.get("delta")
if audio_message:
try:
audio_bytes = base64.b64decode(audio_message)
# Assuming 16-bit PCM (int16)
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
# Interpret as mono audio:
audio_array = audio_array.reshape(1, -1)
# Instead of playing the audio, add the chunk to the output queue
await self.output_queue.put(
(self.output_sample_rate, audio_array)
)
except Exception as e:
print("Error processing audio data:", e)
else:
print("Unknown event:", event)
elif msg.type == aiohttp.WSMsgType.ERROR:
break
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
"""Sends received audio frames to the WebSocket."""
if not self.ws or self.ws.closed:
return
try:
_, array = frame
array = array.squeeze()
audio_message = base64.b64encode(array.tobytes()).decode("utf-8")
message = {"type": "input_audio_buffer.append", "audio": audio_message}
await self.ws.send_str(json.dumps(message))
except aiohttp.ClientConnectionError as e:
print("Connection closed while sending:", e)
return
async def emit(self) -> tuple[int, np.ndarray] | AdditionalOutputs | None:
"""
Collects multiple audio chunks from the queue before returning them as a single contiguous audio array.
This helps smooth playback.
"""
item = await wait_for_item(self.output_queue)
# If it's a transcript event, return it immediately.
if not isinstance(item, tuple):
return item
# Otherwise, it is an audio chunk (sample_rate, audio_array)
sample_rate, first_chunk = item
audio_chunks = [first_chunk]
# Define a minimum length (e.g., 0.1 seconds)
min_samples = int(SAMPLE_RATE * 0.1) # 0.1 sec
# Collect more audio chunks until we have enough samples
while audio_chunks and audio_chunks[0].shape[1] < min_samples:
try:
extra = self.output_queue.get_nowait()
if isinstance(extra, tuple):
_, chunk = extra
audio_chunks.append(chunk)
else:
# If it's not an audio chunk, put it back
await self.output_queue.put(extra)
break
except asyncio.QueueEmpty:
break
# Concatenate collected chunks along the time axis (axis=1)
full_audio = np.concatenate(audio_chunks, axis=1)
return (sample_rate, full_audio)
async def shutdown(self) -> None:
"""Closes the WebSocket and session properly."""
if self.ws:
await self.ws.close()
self.ws = None
if self.session:
await self.session.close()
self.session = None
def update_chatbot(chatbot: list[dict], response) -> list[dict]:
"""Appends the AI assistant's transcript response to the chatbot messages."""
chatbot.append({"role": "assistant", "content": response.transcript})
return chatbot
chatbot = gr.Chatbot(type="messages")
latest_message = gr.Textbox(type="text", visible=False)
stream = Stream(
AzureAudioHandler(),
mode="send-receive",
modality="audio",
additional_inputs=[chatbot],
additional_outputs=[chatbot],
additional_outputs_handler=update_chatbot,
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
concurrency_limit=5 if get_space() else None,
time_limit=90 if get_space() else None,
)
app = FastAPI()
stream.mount(app)
@app.get("/")
async def _():
rtc_config = get_twilio_turn_credentials() if get_space() else None
html_content = (cur_dir / "index.html").read_text()
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
return HTMLResponse(content=html_content)
@app.get("/outputs")
def _(webrtc_id: str):
async def output_stream():
import json
async for output in stream.output_stream(webrtc_id):
s = json.dumps({"role": "assistant", "content": output.args[0].transcript})
yield f"event: output\ndata: {s}\n\n"
return StreamingResponse(output_stream(), media_type="text/event-stream")
if __name__ == "__main__":
import os
if (mode := os.getenv("MODE")) == "UI":
stream.ui.launch(server_port=7860)
elif mode == "PHONE":
stream.fastphone(host="0.0.0.0", port=7860)
else:
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)