Files
gradio-webrtc/demo/stream_whisper.py

54 lines
1.5 KiB
Python

import tempfile
import gradio as gr
import numpy as np
from gradio_webrtc import AdditionalOutputs, ReplyOnPause, WebRTC
from openai import OpenAI
from pydub import AudioSegment
from dotenv import load_dotenv
load_dotenv()
client = OpenAI()
def transcribe(audio: tuple[int, np.ndarray], transcript: list[dict]):
print("audio", audio)
segment = AudioSegment(
audio[1].tobytes(),
frame_rate=audio[0],
sample_width=audio[1].dtype.itemsize,
channels=1,
)
transcript.append({"role": "user", "content": gr.Audio((audio[0], audio[1].squeeze()))})
with tempfile.NamedTemporaryFile(suffix=".mp3") as temp_audio:
segment.export(temp_audio.name, format="mp3")
next_chunk = client.audio.transcriptions.create(
model="whisper-1", file=open(temp_audio.name, "rb")
).text
transcript.append({"role": "assistant", "content": next_chunk})
yield AdditionalOutputs(transcript)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
audio = WebRTC(
label="Stream",
mode="send",
modality="audio",
)
with gr.Column():
transcript = gr.Chatbot(label="transcript", type="messages")
audio.stream(ReplyOnPause(transcribe), inputs=[audio, transcript], outputs=[audio],
time_limit=30)
audio.on_additional_outputs(lambda s: s, outputs=transcript)
if __name__ == "__main__":
demo.launch()