mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-05 01:49:23 +08:00
146 lines
3.9 KiB
Python
146 lines
3.9 KiB
Python
import base64
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import gradio as gr
|
|
import huggingface_hub
|
|
import numpy as np
|
|
from dotenv import load_dotenv
|
|
from fastapi import FastAPI
|
|
from fastapi.responses import HTMLResponse, StreamingResponse
|
|
from fastrtc import (
|
|
AdditionalOutputs,
|
|
ReplyOnStopWords,
|
|
Stream,
|
|
get_stt_model,
|
|
get_twilio_turn_credentials,
|
|
)
|
|
from gradio.utils import get_space
|
|
from pydantic import BaseModel
|
|
|
|
load_dotenv()
|
|
|
|
curr_dir = Path(__file__).parent
|
|
|
|
|
|
client = huggingface_hub.InferenceClient(
|
|
api_key=os.environ.get("SAMBANOVA_API_KEY"),
|
|
provider="sambanova",
|
|
)
|
|
model = get_stt_model()
|
|
|
|
|
|
def response(
|
|
audio: tuple[int, np.ndarray],
|
|
gradio_chatbot: list[dict] | None = None,
|
|
conversation_state: list[dict] | None = None,
|
|
):
|
|
gradio_chatbot = gradio_chatbot or []
|
|
conversation_state = conversation_state or []
|
|
text = model.stt(audio)
|
|
print("STT in handler", text)
|
|
sample_rate, array = audio
|
|
gradio_chatbot.append(
|
|
{"role": "user", "content": gr.Audio((sample_rate, array.squeeze()))}
|
|
)
|
|
yield AdditionalOutputs(gradio_chatbot, conversation_state)
|
|
|
|
conversation_state.append({"role": "user", "content": text})
|
|
|
|
request = client.chat.completions.create(
|
|
model="meta-llama/Llama-3.2-3B-Instruct",
|
|
messages=conversation_state, # type: ignore
|
|
temperature=0.1,
|
|
top_p=0.1,
|
|
)
|
|
response = {"role": "assistant", "content": request.choices[0].message.content}
|
|
|
|
conversation_state.append(response)
|
|
gradio_chatbot.append(response)
|
|
|
|
yield AdditionalOutputs(gradio_chatbot, conversation_state)
|
|
|
|
|
|
chatbot = gr.Chatbot(type="messages", value=[])
|
|
state = gr.State(value=[])
|
|
stream = Stream(
|
|
ReplyOnStopWords(
|
|
response, # type: ignore
|
|
stop_words=["computer"],
|
|
input_sample_rate=16000,
|
|
),
|
|
mode="send",
|
|
modality="audio",
|
|
additional_inputs=[chatbot, state],
|
|
additional_outputs=[chatbot, state],
|
|
additional_outputs_handler=lambda *a: (a[2], a[3]),
|
|
concurrency_limit=5 if get_space() else None,
|
|
time_limit=90 if get_space() else None,
|
|
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
|
|
)
|
|
app = FastAPI()
|
|
stream.mount(app)
|
|
|
|
|
|
class Message(BaseModel):
|
|
role: str
|
|
content: str
|
|
|
|
|
|
class InputData(BaseModel):
|
|
webrtc_id: str
|
|
chatbot: list[Message]
|
|
state: list[Message]
|
|
|
|
|
|
@app.get("/")
|
|
async def _():
|
|
rtc_config = get_twilio_turn_credentials() if get_space() else None
|
|
html_content = (curr_dir / "index.html").read_text()
|
|
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
|
|
return HTMLResponse(content=html_content)
|
|
|
|
|
|
@app.post("/input_hook")
|
|
async def _(data: InputData):
|
|
body = data.model_dump()
|
|
stream.set_input(data.webrtc_id, body["chatbot"], body["state"])
|
|
|
|
|
|
def audio_to_base64(file_path):
|
|
audio_format = "wav"
|
|
with open(file_path, "rb") as audio_file:
|
|
encoded_audio = base64.b64encode(audio_file.read()).decode("utf-8")
|
|
return f"data:audio/{audio_format};base64,{encoded_audio}"
|
|
|
|
|
|
@app.get("/outputs")
|
|
async def _(webrtc_id: str):
|
|
async def output_stream():
|
|
async for output in stream.output_stream(webrtc_id):
|
|
chatbot = output.args[0]
|
|
state = output.args[1]
|
|
data = {
|
|
"message": state[-1],
|
|
"audio": audio_to_base64(chatbot[-1]["content"].value["path"])
|
|
if chatbot[-1]["role"] == "user"
|
|
else None,
|
|
}
|
|
yield f"event: output\ndata: {json.dumps(data)}\n\n"
|
|
|
|
return StreamingResponse(output_stream(), media_type="text/event-stream")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import os
|
|
|
|
if (mode := os.getenv("MODE")) == "UI":
|
|
stream.ui.launch(server_port=7860)
|
|
elif mode == "PHONE":
|
|
raise ValueError("Phone mode not supported")
|
|
else:
|
|
import uvicorn
|
|
|
|
uvicorn.run(app, host="0.0.0.0", port=7860)
|