mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-05 01:49:23 +08:00
* Add code * add code * add code * Rename messages * rename * add code * Add demo * docs + demos + bug fixes * add code * styles * user guide * Styles * Add code * misc docs updates * print nit * whisper + pr * url for images * whsiper update * Fix bugs * remove demo files * version number * Fix pypi readme * Fix * demos * Add llama code editor * Update llama code editor and object detection cookbook * Add more cookbook demos * add code * Fix links for PR deploys * add code * Fix the install * add tts * TTS docs * Typo * Pending bubbles for reply on pause * Stream redesign (#63) * better error handling * Websocket error handling * add code --------- Co-authored-by: Freddy Boulton <freddyboulton@hf-freddy.local> * remove docs from dist * Some docs typos * more typos * upload changes + docs * docs * better phone * update docs * add code * Make demos better * fix docs + websocket start_up * remove mention of FastAPI app * fastphone tweaks * add code * ReplyOnStopWord fixes * Fix cookbook * Fix pypi readme * add code * bump versions * sambanova cookbook * Fix tags * Llm voice chat * kyutai tag * Add error message to all index.html * STT module uses Moonshine * Not required from typing extensions * fix llm voice chat * Add vpn warning * demo fixes * demos * Add more ui args and gemini audio-video * update cookbook * version 9 --------- Co-authored-by: Freddy Boulton <freddyboulton@hf-freddy.local>
154 lines
4.6 KiB
Python
154 lines
4.6 KiB
Python
import time
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import onnxruntime
|
|
|
|
try:
|
|
from demo.object_detection.utils import draw_detections
|
|
except (ImportError, ModuleNotFoundError):
|
|
from utils import draw_detections
|
|
|
|
|
|
class YOLOv10:
|
|
def __init__(self, path):
|
|
# Initialize model
|
|
self.initialize_model(path)
|
|
|
|
def __call__(self, image):
|
|
return self.detect_objects(image)
|
|
|
|
def initialize_model(self, path):
|
|
self.session = onnxruntime.InferenceSession(
|
|
path, providers=onnxruntime.get_available_providers()
|
|
)
|
|
# Get model info
|
|
self.get_input_details()
|
|
self.get_output_details()
|
|
|
|
def detect_objects(self, image, conf_threshold=0.3):
|
|
input_tensor = self.prepare_input(image)
|
|
|
|
# Perform inference on the image
|
|
new_image = self.inference(image, input_tensor, conf_threshold)
|
|
|
|
return new_image
|
|
|
|
def prepare_input(self, image):
|
|
self.img_height, self.img_width = image.shape[:2]
|
|
|
|
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
# Resize input image
|
|
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
|
|
|
|
# Scale input pixel values to 0 to 1
|
|
input_img = input_img / 255.0
|
|
input_img = input_img.transpose(2, 0, 1)
|
|
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
|
|
|
|
return input_tensor
|
|
|
|
def inference(self, image, input_tensor, conf_threshold=0.3):
|
|
start = time.perf_counter()
|
|
outputs = self.session.run(
|
|
self.output_names, {self.input_names[0]: input_tensor}
|
|
)
|
|
|
|
print(f"Inference time: {(time.perf_counter() - start) * 1000:.2f} ms")
|
|
(
|
|
boxes,
|
|
scores,
|
|
class_ids,
|
|
) = self.process_output(outputs, conf_threshold)
|
|
return self.draw_detections(image, boxes, scores, class_ids)
|
|
|
|
def process_output(self, output, conf_threshold=0.3):
|
|
predictions = np.squeeze(output[0])
|
|
|
|
# Filter out object confidence scores below threshold
|
|
scores = predictions[:, 4]
|
|
predictions = predictions[scores > conf_threshold, :]
|
|
scores = scores[scores > conf_threshold]
|
|
|
|
if len(scores) == 0:
|
|
return [], [], []
|
|
|
|
# Get the class with the highest confidence
|
|
class_ids = predictions[:, 5].astype(int)
|
|
|
|
# Get bounding boxes for each object
|
|
boxes = self.extract_boxes(predictions)
|
|
|
|
return boxes, scores, class_ids
|
|
|
|
def extract_boxes(self, predictions):
|
|
# Extract boxes from predictions
|
|
boxes = predictions[:, :4]
|
|
|
|
# Scale boxes to original image dimensions
|
|
boxes = self.rescale_boxes(boxes)
|
|
|
|
# Convert boxes to xyxy format
|
|
# boxes = xywh2xyxy(boxes)
|
|
|
|
return boxes
|
|
|
|
def rescale_boxes(self, boxes):
|
|
# Rescale boxes to original image dimensions
|
|
input_shape = np.array(
|
|
[self.input_width, self.input_height, self.input_width, self.input_height]
|
|
)
|
|
boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
|
boxes *= np.array(
|
|
[self.img_width, self.img_height, self.img_width, self.img_height]
|
|
)
|
|
return boxes
|
|
|
|
def draw_detections(
|
|
self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4
|
|
):
|
|
return draw_detections(image, boxes, scores, class_ids, mask_alpha)
|
|
|
|
def get_input_details(self):
|
|
model_inputs = self.session.get_inputs()
|
|
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
|
|
|
|
self.input_shape = model_inputs[0].shape
|
|
self.input_height = self.input_shape[2]
|
|
self.input_width = self.input_shape[3]
|
|
|
|
def get_output_details(self):
|
|
model_outputs = self.session.get_outputs()
|
|
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import tempfile
|
|
|
|
import requests
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
model_file = hf_hub_download(
|
|
repo_id="onnx-community/yolov10s", filename="onnx/model.onnx"
|
|
)
|
|
|
|
yolov8_detector = YOLOv10(model_file)
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
|
|
f.write(
|
|
requests.get(
|
|
"https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
|
|
).content
|
|
)
|
|
f.seek(0)
|
|
img = cv2.imread(f.name)
|
|
|
|
# # Detect Objects
|
|
combined_image = yolov8_detector.detect_objects(img)
|
|
|
|
# Draw detections
|
|
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
|
|
cv2.imshow("Output", combined_image)
|
|
cv2.waitKey(0)
|