mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-04 17:39:23 +08:00
75 lines
2.0 KiB
Python
75 lines
2.0 KiB
Python
import os
|
|
|
|
import cv2
|
|
import gradio as gr
|
|
from gradio_webrtc import WebRTC
|
|
from huggingface_hub import hf_hub_download
|
|
from inference import YOLOv10
|
|
from twilio.rest import Client
|
|
|
|
model_file = hf_hub_download(
|
|
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
|
|
)
|
|
|
|
model = YOLOv10(model_file)
|
|
|
|
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
|
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
|
|
|
if account_sid and auth_token:
|
|
client = Client(account_sid, auth_token)
|
|
|
|
token = client.tokens.create()
|
|
|
|
rtc_configuration = {
|
|
"iceServers": token.ice_servers,
|
|
"iceTransportPolicy": "relay",
|
|
}
|
|
else:
|
|
rtc_configuration = None
|
|
|
|
|
|
def detection(frame, conf_threshold=0.3):
|
|
frame = cv2.flip(frame, 0)
|
|
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
|
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
|
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.HTML(
|
|
"""
|
|
<h1 style='text-align: center'>
|
|
YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
|
|
</h1>
|
|
"""
|
|
)
|
|
gr.HTML(
|
|
"""
|
|
<h3 style='text-align: center'>
|
|
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
|
</h3>
|
|
"""
|
|
)
|
|
with gr.Column(elem_classes=["my-column"]):
|
|
with gr.Group(elem_classes=["my-group"]):
|
|
image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
|
|
conf_threshold = gr.Slider(
|
|
label="Confidence Threshold",
|
|
minimum=0.0,
|
|
maximum=1.0,
|
|
step=0.05,
|
|
value=0.30,
|
|
)
|
|
number = gr.Number()
|
|
|
|
image.stream(
|
|
fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
|
|
)
|
|
image.on_additional_outputs(lambda n: n, outputs=[number])
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch()
|