mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-05 09:59:22 +08:00
* Add auto errors * change code --------- Co-authored-by: Freddy Boulton <freddyboulton@hf-freddy.local>
142 lines
4.2 KiB
Python
142 lines
4.2 KiB
Python
import asyncio
|
|
import base64
|
|
import json
|
|
from pathlib import Path
|
|
|
|
import gradio as gr
|
|
import numpy as np
|
|
import openai
|
|
from dotenv import load_dotenv
|
|
from fastapi import FastAPI
|
|
from fastapi.responses import HTMLResponse, StreamingResponse
|
|
from fastrtc import (
|
|
AdditionalOutputs,
|
|
AsyncStreamHandler,
|
|
Stream,
|
|
get_twilio_turn_credentials,
|
|
wait_for_item,
|
|
)
|
|
from gradio.utils import get_space
|
|
from openai.types.beta.realtime import ResponseAudioTranscriptDoneEvent
|
|
|
|
load_dotenv()
|
|
|
|
cur_dir = Path(__file__).parent
|
|
|
|
SAMPLE_RATE = 24000
|
|
|
|
|
|
class OpenAIHandler(AsyncStreamHandler):
|
|
def __init__(
|
|
self,
|
|
) -> None:
|
|
super().__init__(
|
|
expected_layout="mono",
|
|
output_sample_rate=SAMPLE_RATE,
|
|
output_frame_size=480,
|
|
input_sample_rate=SAMPLE_RATE,
|
|
)
|
|
self.connection = None
|
|
self.output_queue = asyncio.Queue()
|
|
|
|
def copy(self):
|
|
return OpenAIHandler()
|
|
|
|
async def start_up(
|
|
self,
|
|
):
|
|
"""Connect to realtime API. Run forever in separate thread to keep connection open."""
|
|
self.client = openai.AsyncOpenAI()
|
|
async with self.client.beta.realtime.connect(
|
|
model="gpt-4o-mini-realtime-preview-2024-12-17"
|
|
) as conn:
|
|
await conn.session.update(
|
|
session={"turn_detection": {"type": "server_vad"}}
|
|
)
|
|
self.connection = conn
|
|
async for event in self.connection:
|
|
if event.type == "response.audio_transcript.done":
|
|
await self.output_queue.put(AdditionalOutputs(event))
|
|
if event.type == "response.audio.delta":
|
|
await self.output_queue.put(
|
|
(
|
|
self.output_sample_rate,
|
|
np.frombuffer(
|
|
base64.b64decode(event.delta), dtype=np.int16
|
|
).reshape(1, -1),
|
|
),
|
|
)
|
|
|
|
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
|
|
if not self.connection:
|
|
return
|
|
_, array = frame
|
|
array = array.squeeze()
|
|
audio_message = base64.b64encode(array.tobytes()).decode("utf-8")
|
|
await self.connection.input_audio_buffer.append(audio=audio_message) # type: ignore
|
|
|
|
async def emit(self) -> tuple[int, np.ndarray] | AdditionalOutputs | None:
|
|
return await wait_for_item(self.output_queue)
|
|
|
|
async def shutdown(self) -> None:
|
|
if self.connection:
|
|
await self.connection.close()
|
|
self.connection = None
|
|
|
|
|
|
def update_chatbot(chatbot: list[dict], response: ResponseAudioTranscriptDoneEvent):
|
|
chatbot.append({"role": "assistant", "content": response.transcript})
|
|
return chatbot
|
|
|
|
|
|
chatbot = gr.Chatbot(type="messages")
|
|
latest_message = gr.Textbox(type="text", visible=False)
|
|
stream = Stream(
|
|
OpenAIHandler(),
|
|
mode="send-receive",
|
|
modality="audio",
|
|
additional_inputs=[chatbot],
|
|
additional_outputs=[chatbot],
|
|
additional_outputs_handler=update_chatbot,
|
|
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
|
|
concurrency_limit=5 if get_space() else None,
|
|
time_limit=90 if get_space() else None,
|
|
)
|
|
|
|
app = FastAPI()
|
|
|
|
stream.mount(app)
|
|
|
|
|
|
@app.get("/")
|
|
async def _():
|
|
rtc_config = get_twilio_turn_credentials() if get_space() else None
|
|
html_content = (cur_dir / "index.html").read_text()
|
|
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
|
|
return HTMLResponse(content=html_content)
|
|
|
|
|
|
@app.get("/outputs")
|
|
def _(webrtc_id: str):
|
|
async def output_stream():
|
|
import json
|
|
|
|
async for output in stream.output_stream(webrtc_id):
|
|
s = json.dumps({"role": "assistant", "content": output.args[0].transcript})
|
|
yield f"event: output\ndata: {s}\n\n"
|
|
|
|
return StreamingResponse(output_stream(), media_type="text/event-stream")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import os
|
|
|
|
if (mode := os.getenv("MODE")) == "UI":
|
|
stream.ui.launch(server_port=7860)
|
|
elif mode == "PHONE":
|
|
stream.fastphone(host="0.0.0.0", port=7860)
|
|
else:
|
|
import uvicorn
|
|
|
|
uvicorn.run(app, host="0.0.0.0", port=7860)
|