mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-05 18:09:23 +08:00
Add example for "Talk to Azure OpenAi" (#181)
* Add example for "Talk to Azure OpenAi" * Code --------- Co-authored-by: Freddy Boulton <alfonsoboulton@gmail.com>
This commit is contained in:
233
demo/talk_to_azure_openai/app.py
Normal file
233
demo/talk_to_azure_openai/app.py
Normal file
@@ -0,0 +1,233 @@
|
||||
import asyncio
|
||||
import base64
|
||||
import json
|
||||
from pathlib import Path
|
||||
import sounddevice as sd
|
||||
|
||||
import gradio as gr
|
||||
import numpy as np
|
||||
import aiohttp # pip install aiohttp
|
||||
from dotenv import load_dotenv
|
||||
from fastapi import FastAPI
|
||||
from fastapi.responses import HTMLResponse, StreamingResponse
|
||||
from fastrtc import (
|
||||
AdditionalOutputs,
|
||||
AsyncStreamHandler,
|
||||
Stream,
|
||||
get_twilio_turn_credentials,
|
||||
wait_for_item,
|
||||
)
|
||||
from gradio.utils import get_space
|
||||
|
||||
load_dotenv()
|
||||
cur_dir = Path(__file__).parent
|
||||
load_dotenv("key.env")
|
||||
# sd.default.device = (3, 3) # (Input-Gerät, Output-Gerät)
|
||||
|
||||
# print(f"Used Mic: {sd.query_devices(3)['name']}")
|
||||
# print(f"Used Speaker: {sd.query_devices(3)['name']}")
|
||||
SAMPLE_RATE = 24000
|
||||
|
||||
instruction = """
|
||||
<Role>
|
||||
You a helpful assistant.
|
||||
"""
|
||||
|
||||
|
||||
class AzureAudioHandler(AsyncStreamHandler):
|
||||
def __init__(self) -> None:
|
||||
super().__init__(
|
||||
expected_layout="mono",
|
||||
output_sample_rate=SAMPLE_RATE,
|
||||
output_frame_size=480,
|
||||
input_sample_rate=SAMPLE_RATE,
|
||||
)
|
||||
self.ws = None
|
||||
self.session = None
|
||||
self.output_queue = asyncio.Queue()
|
||||
# This internal buffer is not used directly in receive_messages.
|
||||
# Instead, multiple audio chunks are collected in the emit() method.
|
||||
# If needed, a continuous buffer can also be implemented here.
|
||||
# self.audio_buffer = bytearray()
|
||||
|
||||
def copy(self):
|
||||
return AzureAudioHandler()
|
||||
|
||||
async def start_up(self):
|
||||
"""Connects to the Azure Real-time Audio API via WebSocket using aiohttp."""
|
||||
# Replace the following placeholders with your actual Azure values:
|
||||
azure_api_key = "your-api-key" # e.g., "your-api-key"
|
||||
azure_resource_name = "your-resource-name" # e.g., "aigdopenai"
|
||||
deployment_id = "your-deployment-id" # e.g., "gpt-4o-realtime-preview"
|
||||
api_version = "2024-10-01-preview"
|
||||
azure_endpoint = (
|
||||
f"wss://{azure_resource_name}.openai.azure.com/openai/realtime"
|
||||
f"?api-version={api_version}&deployment={deployment_id}"
|
||||
)
|
||||
headers = {"api-key": azure_api_key}
|
||||
|
||||
self.session = aiohttp.ClientSession()
|
||||
self.ws = await self.session.ws_connect(azure_endpoint, headers=headers)
|
||||
# Send initial session parameters
|
||||
session_update_message = {
|
||||
"type": "session.update",
|
||||
"session": {
|
||||
"turn_detection": {"type": "server_vad"},
|
||||
"instructions": instruction,
|
||||
"voice": "ballad", # Possible voices see https://platform.openai.com/docs/guides/realtime-model-capabilities#voice-options
|
||||
},
|
||||
}
|
||||
|
||||
await self.ws.send_str(json.dumps(session_update_message))
|
||||
# Start receiving messages asynchronously
|
||||
asyncio.create_task(self.receive_messages())
|
||||
|
||||
async def receive_messages(self):
|
||||
"""Handles incoming WebSocket messages and processes them accordingly."""
|
||||
async for msg in self.ws:
|
||||
if msg.type == aiohttp.WSMsgType.TEXT:
|
||||
print("Received event:", msg.data) # Debug output
|
||||
event = json.loads(msg.data)
|
||||
event_type = event.get("type")
|
||||
if event_type in ["final", "response.audio_transcript.done"]:
|
||||
transcript = event.get("transcript", "")
|
||||
|
||||
# Wrap the transcript in an object with a .transcript attribute
|
||||
class TranscriptEvent:
|
||||
pass
|
||||
|
||||
te = TranscriptEvent()
|
||||
te.transcript = transcript
|
||||
await self.output_queue.put(AdditionalOutputs(te))
|
||||
elif event_type == "partial":
|
||||
print("Partial transcript:", event.get("transcript", ""))
|
||||
elif event_type == "response.audio.delta":
|
||||
audio_message = event.get("delta")
|
||||
if audio_message:
|
||||
try:
|
||||
audio_bytes = base64.b64decode(audio_message)
|
||||
# Assuming 16-bit PCM (int16)
|
||||
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
||||
# Interpret as mono audio:
|
||||
audio_array = audio_array.reshape(1, -1)
|
||||
# Instead of playing the audio, add the chunk to the output queue
|
||||
await self.output_queue.put(
|
||||
(self.output_sample_rate, audio_array)
|
||||
)
|
||||
except Exception as e:
|
||||
print("Error processing audio data:", e)
|
||||
else:
|
||||
print("Unknown event:", event)
|
||||
elif msg.type == aiohttp.WSMsgType.ERROR:
|
||||
break
|
||||
|
||||
async def receive(self, frame: tuple[int, np.ndarray]) -> None:
|
||||
"""Sends received audio frames to the WebSocket."""
|
||||
if not self.ws or self.ws.closed:
|
||||
return
|
||||
try:
|
||||
_, array = frame
|
||||
array = array.squeeze()
|
||||
audio_message = base64.b64encode(array.tobytes()).decode("utf-8")
|
||||
message = {"type": "input_audio_buffer.append", "audio": audio_message}
|
||||
await self.ws.send_str(json.dumps(message))
|
||||
except aiohttp.ClientConnectionError as e:
|
||||
print("Connection closed while sending:", e)
|
||||
return
|
||||
|
||||
async def emit(self) -> tuple[int, np.ndarray] | AdditionalOutputs | None:
|
||||
"""
|
||||
Collects multiple audio chunks from the queue before returning them as a single contiguous audio array.
|
||||
This helps smooth playback.
|
||||
"""
|
||||
item = await wait_for_item(self.output_queue)
|
||||
# If it's a transcript event, return it immediately.
|
||||
if not isinstance(item, tuple):
|
||||
return item
|
||||
# Otherwise, it is an audio chunk (sample_rate, audio_array)
|
||||
sample_rate, first_chunk = item
|
||||
audio_chunks = [first_chunk]
|
||||
# Define a minimum length (e.g., 0.1 seconds)
|
||||
min_samples = int(SAMPLE_RATE * 0.1) # 0.1 sec
|
||||
# Collect more audio chunks until we have enough samples
|
||||
while audio_chunks and audio_chunks[0].shape[1] < min_samples:
|
||||
try:
|
||||
extra = self.output_queue.get_nowait()
|
||||
if isinstance(extra, tuple):
|
||||
_, chunk = extra
|
||||
audio_chunks.append(chunk)
|
||||
else:
|
||||
# If it's not an audio chunk, put it back
|
||||
await self.output_queue.put(extra)
|
||||
break
|
||||
except asyncio.QueueEmpty:
|
||||
break
|
||||
# Concatenate collected chunks along the time axis (axis=1)
|
||||
full_audio = np.concatenate(audio_chunks, axis=1)
|
||||
return (sample_rate, full_audio)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
"""Closes the WebSocket and session properly."""
|
||||
if self.ws:
|
||||
await self.ws.close()
|
||||
self.ws = None
|
||||
if self.session:
|
||||
await self.session.close()
|
||||
self.session = None
|
||||
|
||||
|
||||
def update_chatbot(chatbot: list[dict], response) -> list[dict]:
|
||||
"""Appends the AI assistant's transcript response to the chatbot messages."""
|
||||
chatbot.append({"role": "assistant", "content": response.transcript})
|
||||
return chatbot
|
||||
|
||||
|
||||
chatbot = gr.Chatbot(type="messages")
|
||||
latest_message = gr.Textbox(type="text", visible=False)
|
||||
stream = Stream(
|
||||
AzureAudioHandler(),
|
||||
mode="send-receive",
|
||||
modality="audio",
|
||||
additional_inputs=[chatbot],
|
||||
additional_outputs=[chatbot],
|
||||
additional_outputs_handler=update_chatbot,
|
||||
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
|
||||
concurrency_limit=5 if get_space() else None,
|
||||
time_limit=90 if get_space() else None,
|
||||
)
|
||||
|
||||
app = FastAPI()
|
||||
stream.mount(app)
|
||||
|
||||
|
||||
@app.get("/")
|
||||
async def _():
|
||||
rtc_config = get_twilio_turn_credentials() if get_space() else None
|
||||
html_content = (cur_dir / "index.html").read_text()
|
||||
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
|
||||
return HTMLResponse(content=html_content)
|
||||
|
||||
|
||||
@app.get("/outputs")
|
||||
def _(webrtc_id: str):
|
||||
async def output_stream():
|
||||
import json
|
||||
|
||||
async for output in stream.output_stream(webrtc_id):
|
||||
s = json.dumps({"role": "assistant", "content": output.args[0].transcript})
|
||||
yield f"event: output\ndata: {s}\n\n"
|
||||
|
||||
return StreamingResponse(output_stream(), media_type="text/event-stream")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import os
|
||||
|
||||
if (mode := os.getenv("MODE")) == "UI":
|
||||
stream.ui.launch(server_port=7860)
|
||||
elif mode == "PHONE":
|
||||
stream.fastphone(host="0.0.0.0", port=7860)
|
||||
else:
|
||||
import uvicorn
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=7860)
|
||||
Reference in New Issue
Block a user