mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-05 18:09:23 +08:00
Add code
This commit is contained in:
111
demo/app.py
111
demo/app.py
@@ -1,88 +1,42 @@
|
||||
import gradio as gr
|
||||
import cv2
|
||||
import numpy as np
|
||||
from huggingface_hub import hf_hub_download
|
||||
from gradio_webrtc import WebRTC
|
||||
from pathlib import Path
|
||||
from twilio.rest import Client
|
||||
import os
|
||||
from inference import YOLOv10
|
||||
|
||||
model_file = hf_hub_download(
|
||||
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
|
||||
)
|
||||
|
||||
model = YOLOv10(model_file)
|
||||
|
||||
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
||||
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
||||
client = Client(account_sid, auth_token)
|
||||
|
||||
token = client.tokens.create()
|
||||
if account_sid and auth_token:
|
||||
client = Client(account_sid, auth_token)
|
||||
|
||||
rtc_configuration = {
|
||||
"iceServers": token.ice_servers,
|
||||
"iceTransportPolicy": "relay",
|
||||
}
|
||||
token = client.tokens.create()
|
||||
|
||||
CLASSES = [
|
||||
"background",
|
||||
"aeroplane",
|
||||
"bicycle",
|
||||
"bird",
|
||||
"boat",
|
||||
"bottle",
|
||||
"bus",
|
||||
"car",
|
||||
"cat",
|
||||
"chair",
|
||||
"cow",
|
||||
"diningtable",
|
||||
"dog",
|
||||
"horse",
|
||||
"motorbike",
|
||||
"person",
|
||||
"pottedplant",
|
||||
"sheep",
|
||||
"sofa",
|
||||
"train",
|
||||
"tvmonitor",
|
||||
]
|
||||
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
||||
rtc_configuration = {
|
||||
"iceServers": token.ice_servers,
|
||||
"iceTransportPolicy": "relay",
|
||||
}
|
||||
else:
|
||||
rtc_configuration = None
|
||||
|
||||
directory = Path(__file__).parent
|
||||
|
||||
MODEL = str((directory / "MobileNetSSD_deploy.caffemodel").resolve())
|
||||
PROTOTXT = str((directory / "MobileNetSSD_deploy.prototxt.txt").resolve())
|
||||
net = cv2.dnn.readNetFromCaffe(PROTOTXT, MODEL)
|
||||
|
||||
rtc_configuration = None
|
||||
|
||||
def detection(image, conf_threshold=0.3):
|
||||
|
||||
blob = cv2.dnn.blobFromImage(
|
||||
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
||||
)
|
||||
net.setInput(blob)
|
||||
|
||||
detections = net.forward()
|
||||
image = cv2.resize(image, (500, 500))
|
||||
(h, w) = image.shape[:2]
|
||||
labels = []
|
||||
for i in np.arange(0, detections.shape[2]):
|
||||
confidence = detections[0, 0, i, 2]
|
||||
|
||||
if confidence > conf_threshold:
|
||||
# extract the index of the class label from the `detections`,
|
||||
# then compute the (x, y)-coordinates of the bounding box for
|
||||
# the object
|
||||
idx = int(detections[0, 0, i, 1])
|
||||
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
||||
(startX, startY, endX, endY) = box.astype("int")
|
||||
|
||||
# display the prediction
|
||||
label = f"{CLASSES[idx]}: {round(confidence * 100, 2)}%"
|
||||
labels.append(label)
|
||||
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
||||
y = startY - 15 if startY - 15 > 15 else startY + 15
|
||||
cv2.putText(
|
||||
image, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2
|
||||
)
|
||||
return image
|
||||
image = cv2.resize(image, (model.input_width, model.input_height))
|
||||
new_image = model.detect_objects(image, conf_threshold)
|
||||
return cv2.resize(new_image, (500, 500))
|
||||
|
||||
|
||||
css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
|
||||
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
|
||||
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
|
||||
|
||||
|
||||
@@ -90,18 +44,20 @@ with gr.Blocks(css=css) as demo:
|
||||
gr.HTML(
|
||||
"""
|
||||
<h1 style='text-align: center'>
|
||||
YOLOv10 Webcam Stream
|
||||
YOLOv10 Webcam Stream (Powered by WebRTC ⚡️)
|
||||
</h1>
|
||||
""")
|
||||
"""
|
||||
)
|
||||
gr.HTML(
|
||||
"""
|
||||
<h3 style='text-align: center'>
|
||||
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
||||
</h3>
|
||||
""")
|
||||
"""
|
||||
)
|
||||
with gr.Column(elem_classes=["my-column"]):
|
||||
with gr.Group(elem_classes=["my-group"]):
|
||||
image = WebRTC(label="Strean", rtc_configuration=rtc_configuration)
|
||||
image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
|
||||
conf_threshold = gr.Slider(
|
||||
label="Confidence Threshold",
|
||||
minimum=0.0,
|
||||
@@ -109,13 +65,10 @@ with gr.Blocks(css=css) as demo:
|
||||
step=0.05,
|
||||
value=0.30,
|
||||
)
|
||||
|
||||
image.webrtc_stream(
|
||||
fn=detection,
|
||||
inputs=[image],
|
||||
stream_every=0.05,
|
||||
time_limit=30
|
||||
|
||||
image.stream(
|
||||
fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
|
||||
Reference in New Issue
Block a user