[feat] update some feature

sync code of  fastrtc,
add text support through datachannel,
fix safari connect problem
support chat without camera or mic
This commit is contained in:
huangbinchao.hbc
2025-03-25 18:05:10 +08:00
parent e1fb40a8a8
commit aefb08150f
222 changed files with 28698 additions and 5889 deletions

View File

@@ -0,0 +1,76 @@
from .credentials import (
get_hf_turn_credentials,
get_turn_credentials,
get_twilio_turn_credentials,
)
from .pause_detection import (
ModelOptions,
PauseDetectionModel,
SileroVadOptions,
get_silero_model,
)
from .reply_on_pause import AlgoOptions, ReplyOnPause
from .reply_on_stopwords import ReplyOnStopWords
from .speech_to_text import MoonshineSTT, get_stt_model
from .stream import Stream, UIArgs
from .text_to_speech import KokoroTTSOptions, get_tts_model
from .tracks import (
AsyncAudioVideoStreamHandler,
AsyncStreamHandler,
AudioEmitType,
AudioVideoStreamHandler,
StreamHandler,
VideoEmitType,
)
from .utils import (
AdditionalOutputs,
Warning,
WebRTCError,
aggregate_bytes_to_16bit,
async_aggregate_bytes_to_16bit,
audio_to_bytes,
audio_to_file,
audio_to_float32,
audio_to_int16,
wait_for_item,
)
from .webrtc import (
WebRTC,
)
__all__ = [
"AsyncStreamHandler",
"AudioVideoStreamHandler",
"AudioEmitType",
"AsyncAudioVideoStreamHandler",
"AlgoOptions",
"AdditionalOutputs",
"aggregate_bytes_to_16bit",
"async_aggregate_bytes_to_16bit",
"audio_to_bytes",
"audio_to_file",
"audio_to_float32",
"audio_to_int16",
"get_hf_turn_credentials",
"get_twilio_turn_credentials",
"get_turn_credentials",
"ReplyOnPause",
"ReplyOnStopWords",
"SileroVadOptions",
"get_stt_model",
"MoonshineSTT",
"StreamHandler",
"Stream",
"VideoEmitType",
"WebRTC",
"WebRTCError",
"Warning",
"get_tts_model",
"KokoroTTSOptions",
"wait_for_item",
"UIArgs",
"ModelOptions",
"PauseDetectionModel",
"get_silero_model",
"SileroVadOptions",
]

View File

@@ -0,0 +1,52 @@
import os
from typing import Literal
import requests
def get_hf_turn_credentials(token=None):
if token is None:
token = os.getenv("HF_TOKEN")
credentials = requests.get(
"https://fastrtc-turn-server-login.hf.space/credentials",
headers={"X-HF-Access-Token": token},
)
if not credentials.status_code == 200:
raise ValueError("Failed to get credentials from HF turn server")
return {
"iceServers": [
{
"urls": "turn:gradio-turn.com:80",
**credentials.json(),
},
]
}
def get_twilio_turn_credentials(twilio_sid=None, twilio_token=None):
try:
from twilio.rest import Client
except ImportError:
raise ImportError("Please install twilio with `pip install twilio`")
if not twilio_sid and not twilio_token:
twilio_sid = os.environ.get("TWILIO_ACCOUNT_SID")
twilio_token = os.environ.get("TWILIO_AUTH_TOKEN")
client = Client(twilio_sid, twilio_token)
token = client.tokens.create()
return {
"iceServers": token.ice_servers,
"iceTransportPolicy": "relay",
}
def get_turn_credentials(method: Literal["hf", "twilio"] = "hf", **kwargs):
if method == "hf":
return get_hf_turn_credentials(**kwargs)
elif method == "twilio":
return get_twilio_turn_credentials(**kwargs)
else:
raise ValueError("Invalid method. Must be 'hf' or 'twilio'")

View File

@@ -0,0 +1,10 @@
from .protocol import ModelOptions, PauseDetectionModel
from .silero import SileroVADModel, SileroVadOptions, get_silero_model
__all__ = [
"SileroVADModel",
"SileroVadOptions",
"PauseDetectionModel",
"ModelOptions",
"get_silero_model",
]

View File

@@ -0,0 +1,20 @@
from typing import Any, Protocol, TypeAlias
import numpy as np
from numpy.typing import NDArray
from ..utils import AudioChunk
ModelOptions: TypeAlias = Any
class PauseDetectionModel(Protocol):
def vad(
self,
audio: tuple[int, NDArray[np.int16] | NDArray[np.float32]],
options: ModelOptions,
) -> tuple[float, list[AudioChunk]]: ...
def warmup(
self,
) -> None: ...

View File

@@ -0,0 +1,329 @@
import logging
import warnings
from dataclasses import dataclass
from functools import lru_cache
from typing import List
import click
import numpy as np
from huggingface_hub import hf_hub_download
from numpy.typing import NDArray
from ..utils import AudioChunk
from .protocol import PauseDetectionModel
logger = logging.getLogger(__name__)
# The code below is adapted from https://github.com/snakers4/silero-vad.
# The code below is adapted from https://github.com/gpt-omni/mini-omni/blob/main/utils/vad.py
@lru_cache
def get_silero_model() -> PauseDetectionModel:
"""Returns the VAD model instance and warms it up with dummy data."""
# Warm up the model with dummy data
try:
import importlib.util
mod = importlib.util.find_spec("onnxruntime")
if mod is None:
raise RuntimeError("Install fastrtc[vad] to use ReplyOnPause")
except (ValueError, ModuleNotFoundError):
raise RuntimeError("Install fastrtc[vad] to use ReplyOnPause")
model = SileroVADModel()
print(click.style("INFO", fg="green") + ":\t Warming up VAD model.")
model.warmup()
print(click.style("INFO", fg="green") + ":\t VAD model warmed up.")
return model
@dataclass
class SileroVadOptions:
"""VAD options.
Attributes:
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
than max_speech_duration_s will be split at the timestamp of the last silence that
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be
split aggressively just before max_speech_duration_s.
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
before separating it
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
Values other than these may affect model performance!!
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
speech_duration: If the length of the speech is less than this value, a pause will be detected.
"""
threshold: float = 0.5
min_speech_duration_ms: int = 250
max_speech_duration_s: float = float("inf")
min_silence_duration_ms: int = 2000
window_size_samples: int = 1024
speech_pad_ms: int = 400
class SileroVADModel:
@staticmethod
def download_model() -> str:
return hf_hub_download(
repo_id="freddyaboulton/silero-vad", filename="silero_vad.onnx"
)
def __init__(self):
try:
import onnxruntime
except ImportError as e:
raise RuntimeError(
"Applying the VAD filter requires the onnxruntime package"
) from e
path = self.download_model()
opts = onnxruntime.SessionOptions()
opts.inter_op_num_threads = 1
opts.intra_op_num_threads = 1
opts.log_severity_level = 4
self.session = onnxruntime.InferenceSession(
path,
providers=["CPUExecutionProvider"],
sess_options=opts,
)
def get_initial_state(self, batch_size: int):
h = np.zeros((2, batch_size, 64), dtype=np.float32)
c = np.zeros((2, batch_size, 64), dtype=np.float32)
return h, c
@staticmethod
def collect_chunks(audio: np.ndarray, chunks: List[AudioChunk]) -> np.ndarray:
"""Collects and concatenates audio chunks."""
if not chunks:
return np.array([], dtype=np.float32)
return np.concatenate(
[audio[chunk["start"] : chunk["end"]] for chunk in chunks]
)
def get_speech_timestamps(
self,
audio: np.ndarray,
vad_options: SileroVadOptions,
**kwargs,
) -> List[AudioChunk]:
"""This method is used for splitting long audios into speech chunks using silero VAD.
Args:
audio: One dimensional float array.
vad_options: Options for VAD processing.
kwargs: VAD options passed as keyword arguments for backward compatibility.
Returns:
List of dicts containing begin and end samples of each speech chunk.
"""
threshold = vad_options.threshold
min_speech_duration_ms = vad_options.min_speech_duration_ms
max_speech_duration_s = vad_options.max_speech_duration_s
min_silence_duration_ms = vad_options.min_silence_duration_ms
window_size_samples = vad_options.window_size_samples
speech_pad_ms = vad_options.speech_pad_ms
if window_size_samples not in [512, 1024, 1536]:
warnings.warn(
"Unusual window_size_samples! Supported window_size_samples:\n"
" - [512, 1024, 1536] for 16000 sampling_rate"
)
sampling_rate = 16000
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
max_speech_samples = (
sampling_rate * max_speech_duration_s
- window_size_samples
- 2 * speech_pad_samples
)
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
audio_length_samples = len(audio)
state = self.get_initial_state(batch_size=1)
speech_probs = []
for current_start_sample in range(0, audio_length_samples, window_size_samples):
chunk = audio[
current_start_sample : current_start_sample + window_size_samples
]
if len(chunk) < window_size_samples:
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
speech_prob, state = self(chunk, state, sampling_rate)
speech_probs.append(speech_prob)
triggered = False
speeches = []
current_speech = {}
neg_threshold = threshold - 0.15
# to save potential segment end (and tolerate some silence)
temp_end = 0
# to save potential segment limits in case of maximum segment size reached
prev_end = next_start = 0
for i, speech_prob in enumerate(speech_probs):
if (speech_prob >= threshold) and temp_end:
temp_end = 0
if next_start < prev_end:
next_start = window_size_samples * i
if (speech_prob >= threshold) and not triggered:
triggered = True
current_speech["start"] = window_size_samples * i
continue
if (
triggered
and (window_size_samples * i) - current_speech["start"]
> max_speech_samples
):
if prev_end:
current_speech["end"] = prev_end
speeches.append(current_speech)
current_speech = {}
# previously reached silence (< neg_thres) and is still not speech (< thres)
if next_start < prev_end:
triggered = False
else:
current_speech["start"] = next_start
prev_end = next_start = temp_end = 0
else:
current_speech["end"] = window_size_samples * i
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
continue
if (speech_prob < neg_threshold) and triggered:
if not temp_end:
temp_end = window_size_samples * i
# condition to avoid cutting in very short silence
if (
window_size_samples * i
) - temp_end > min_silence_samples_at_max_speech:
prev_end = temp_end
if (window_size_samples * i) - temp_end < min_silence_samples:
continue
else:
current_speech["end"] = temp_end
if (
current_speech["end"] - current_speech["start"]
) > min_speech_samples:
speeches.append(current_speech)
current_speech = {}
prev_end = next_start = temp_end = 0
triggered = False
continue
if (
current_speech
and (audio_length_samples - current_speech["start"]) > min_speech_samples
):
current_speech["end"] = audio_length_samples
speeches.append(current_speech)
for i, speech in enumerate(speeches):
if i == 0:
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
if i != len(speeches) - 1:
silence_duration = speeches[i + 1]["start"] - speech["end"]
if silence_duration < 2 * speech_pad_samples:
speech["end"] += int(silence_duration // 2)
speeches[i + 1]["start"] = int(
max(0, speeches[i + 1]["start"] - silence_duration // 2)
)
else:
speech["end"] = int(
min(audio_length_samples, speech["end"] + speech_pad_samples)
)
speeches[i + 1]["start"] = int(
max(0, speeches[i + 1]["start"] - speech_pad_samples)
)
else:
speech["end"] = int(
min(audio_length_samples, speech["end"] + speech_pad_samples)
)
return speeches
def warmup(self):
for _ in range(10):
dummy_audio = np.zeros(102400, dtype=np.float32)
self.vad((24000, dummy_audio), None)
def vad(
self,
audio: tuple[int, NDArray[np.float32] | NDArray[np.int16]],
options: None | SileroVadOptions,
) -> tuple[float, list[AudioChunk]]:
sampling_rate, audio_ = audio
logger.debug("VAD audio shape input: %s", audio_.shape)
try:
if audio_.dtype != np.float32:
audio_ = audio_.astype(np.float32) / 32768.0
sr = 16000
if sr != sampling_rate:
try:
import librosa # type: ignore
except ImportError as e:
raise RuntimeError(
"Applying the VAD filter requires the librosa if the input sampling rate is not 16000hz"
) from e
audio_ = librosa.resample(audio_, orig_sr=sampling_rate, target_sr=sr)
if not options:
options = SileroVadOptions()
speech_chunks = self.get_speech_timestamps(audio_, options)
logger.debug("VAD speech chunks: %s", speech_chunks)
audio_ = self.collect_chunks(audio_, speech_chunks)
logger.debug("VAD audio shape: %s", audio_.shape)
duration_after_vad = audio_.shape[0] / sr
return duration_after_vad, speech_chunks
except Exception as e:
import math
import traceback
logger.debug("VAD Exception: %s", str(e))
exec = traceback.format_exc()
logger.debug("traceback %s", exec)
return math.inf, []
def __call__(self, x, state, sr: int):
if len(x.shape) == 1:
x = np.expand_dims(x, 0)
if len(x.shape) > 2:
raise ValueError(
f"Too many dimensions for input audio chunk {len(x.shape)}"
)
if sr / x.shape[1] > 31.25: # type: ignore
raise ValueError("Input audio chunk is too short")
h, c = state
ort_inputs = {
"input": x,
"h": h,
"c": c,
"sr": np.array(sr, dtype="int64"),
}
out, h, c = self.session.run(None, ort_inputs)
state = (h, c)
return out, state

View File

@@ -0,0 +1,261 @@
import asyncio
import inspect
from dataclasses import dataclass, field
from logging import getLogger
from threading import Event
from typing import Any, AsyncGenerator, Callable, Generator, Literal, cast
import numpy as np
from numpy.typing import NDArray
from .pause_detection import ModelOptions, PauseDetectionModel, get_silero_model
from .tracks import EmitType, StreamHandler
from .utils import create_message, split_output
logger = getLogger(__name__)
@dataclass
class AlgoOptions:
"""Algorithm options."""
audio_chunk_duration: float = 0.6
started_talking_threshold: float = 0.2
speech_threshold: float = 0.1
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
responding: bool = False
stopped: bool = False
buffer: np.ndarray | None = None
responded_audio: bool = False
interrupted: asyncio.Event = field(default_factory=asyncio.Event)
def new(self):
return AppState()
ReplyFnGenerator = (
Callable[
[tuple[int, NDArray[np.int16]], Any],
Generator[EmitType, None, None],
]
| Callable[
[tuple[int, NDArray[np.int16]]],
Generator[EmitType, None, None],
]
| Callable[
[tuple[int, NDArray[np.int16]]],
AsyncGenerator[EmitType, None],
]
| Callable[
[tuple[int, NDArray[np.int16]], Any],
AsyncGenerator[EmitType, None],
]
)
async def iterate(generator: Generator) -> Any:
return next(generator)
class ReplyOnPause(StreamHandler):
def __init__(
self,
fn: ReplyFnGenerator,
startup_fn: Callable | None = None,
algo_options: AlgoOptions | None = None,
model_options: ModelOptions | None = None,
can_interrupt: bool = True,
expected_layout: Literal["mono", "stereo"] = "mono",
output_sample_rate: int = 24000,
output_frame_size: int = 480,
input_sample_rate: int = 48000,
model: PauseDetectionModel | None = None,
):
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=input_sample_rate,
)
self.can_interrupt = can_interrupt
self.expected_layout: Literal["mono", "stereo"] = expected_layout
self.output_sample_rate = output_sample_rate
self.output_frame_size = output_frame_size
self.model = model or get_silero_model()
self.fn = fn
self.is_async = inspect.isasyncgenfunction(fn)
self.event = Event()
self.state = AppState()
self.generator: (
Generator[EmitType, None, None] | AsyncGenerator[EmitType, None] | None
) = None
self.model_options = model_options
self.algo_options = algo_options or AlgoOptions()
self.startup_fn = startup_fn
@property
def _needs_additional_inputs(self) -> bool:
return len(inspect.signature(self.fn).parameters) > 1
def start_up(self):
if self.startup_fn:
if self._needs_additional_inputs:
self.wait_for_args_sync()
args = self.latest_args[1:]
else:
args = ()
self.generator = self.startup_fn(*args)
self.event.set()
def copy(self):
return ReplyOnPause(
self.fn,
self.startup_fn,
self.algo_options,
self.model_options,
self.can_interrupt,
self.expected_layout,
self.output_sample_rate,
self.output_frame_size,
self.input_sample_rate,
self.model,
)
def determine_pause(
self, audio: np.ndarray, sampling_rate: int, state: AppState
) -> bool:
"""Take in the stream, determine if a pause happened"""
duration = len(audio) / sampling_rate
if duration >= self.algo_options.audio_chunk_duration:
dur_vad, _ = self.model.vad((sampling_rate, audio), self.model_options)
logger.debug("VAD duration: %s", dur_vad)
if (
dur_vad > self.algo_options.started_talking_threshold
and not state.started_talking
):
state.started_talking = True
logger.debug("Started talking")
if state.started_talking:
if state.stream is None:
state.stream = audio
else:
state.stream = np.concatenate((state.stream, audio))
state.buffer = None
if dur_vad < self.algo_options.speech_threshold and state.started_talking:
return True
return False
def process_audio(self, audio: tuple[int, np.ndarray], state: AppState) -> None:
frame_rate, array = audio
array = np.squeeze(array)
if not state.sampling_rate:
state.sampling_rate = frame_rate
if state.buffer is None:
state.buffer = array
else:
state.buffer = np.concatenate((state.buffer, array))
pause_detected = self.determine_pause(
state.buffer, state.sampling_rate, self.state
)
state.pause_detected = pause_detected
def receive(self, frame: tuple[int, np.ndarray]) -> None:
if self.state.responding and not self.can_interrupt:
return
self.process_audio(frame, self.state)
if self.state.pause_detected:
self.event.set()
if self.can_interrupt and self.state.responding:
self._close_generator()
self.generator = None
if self.can_interrupt:
self.clear_queue()
def _close_generator(self):
"""Properly close the generator to ensure resources are released."""
if self.generator is None:
return
try:
if self.is_async:
# For async generators, we need to call aclose()
if hasattr(self.generator, "aclose"):
asyncio.run_coroutine_threadsafe(
cast(AsyncGenerator[EmitType, None], self.generator).aclose(),
self.loop,
).result(timeout=1.0) # Add timeout to prevent blocking
else:
# For sync generators, we can just exhaust it or close it
if hasattr(self.generator, "close"):
cast(Generator[EmitType, None, None], self.generator).close()
except Exception as e:
logger.debug(f"Error closing generator: {e}")
def reset(self):
super().reset()
if self.phone_mode:
self.args_set.set()
self.generator = None
self.event.clear()
self.state = AppState()
async def async_iterate(self, generator) -> EmitType:
return await anext(generator)
def emit(self):
if not self.event.is_set():
return None
else:
if not self.generator:
self.send_message_sync(create_message("log", "pause_detected"))
if self._needs_additional_inputs and not self.args_set.is_set():
if not self.phone_mode:
self.wait_for_args_sync()
else:
self.latest_args = [None]
self.args_set.set()
logger.debug("Creating generator")
audio = cast(np.ndarray, self.state.stream).reshape(1, -1)
if self._needs_additional_inputs:
self.latest_args[0] = (self.state.sampling_rate, audio)
self.generator = self.fn(*self.latest_args) # type: ignore
else:
self.generator = self.fn((self.state.sampling_rate, audio)) # type: ignore
logger.debug("Latest args: %s", self.latest_args)
self.state = self.state.new()
self.state.responding = True
try:
if self.is_async:
output = asyncio.run_coroutine_threadsafe(
self.async_iterate(self.generator), self.loop
).result()
else:
output = next(self.generator) # type: ignore
audio, additional_outputs = split_output(output)
if audio is not None:
self.send_message_sync(create_message("log", "response_starting"))
self.state.responded_audio = True
if self.phone_mode:
if additional_outputs:
self.latest_args = [None] + list(additional_outputs.args)
return output
except (StopIteration, StopAsyncIteration):
if not self.state.responded_audio:
self.send_message_sync(create_message("log", "response_starting"))
self.reset()
except Exception as e:
import traceback
traceback.print_exc()
logger.debug("Error in ReplyOnPause: %s", e)
self.reset()
raise e

View File

@@ -0,0 +1,163 @@
import asyncio
import logging
import re
from typing import Callable, Literal
import numpy as np
from .reply_on_pause import (
AlgoOptions,
AppState,
ModelOptions,
PauseDetectionModel,
ReplyFnGenerator,
ReplyOnPause,
)
from .speech_to_text import get_stt_model, stt_for_chunks
from .utils import audio_to_float32, create_message
logger = logging.getLogger(__name__)
class ReplyOnStopWordsState(AppState):
stop_word_detected: bool = False
post_stop_word_buffer: np.ndarray | None = None
started_talking_pre_stop_word: bool = False
def new(self):
return ReplyOnStopWordsState()
class ReplyOnStopWords(ReplyOnPause):
def __init__(
self,
fn: ReplyFnGenerator,
stop_words: list[str],
startup_fn: Callable | None = None,
algo_options: AlgoOptions | None = None,
model_options: ModelOptions | None = None,
can_interrupt: bool = True,
expected_layout: Literal["mono", "stereo"] = "mono",
output_sample_rate: int = 24000,
output_frame_size: int = 480,
input_sample_rate: int = 48000,
model: PauseDetectionModel | None = None,
):
super().__init__(
fn,
algo_options=algo_options,
startup_fn=startup_fn,
model_options=model_options,
can_interrupt=can_interrupt,
expected_layout=expected_layout,
output_sample_rate=output_sample_rate,
output_frame_size=output_frame_size,
input_sample_rate=input_sample_rate,
model=model,
)
self.stop_words = stop_words
self.state = ReplyOnStopWordsState()
self.stt_model = get_stt_model("moonshine/base")
def stop_word_detected(self, text: str) -> bool:
for stop_word in self.stop_words:
stop_word = stop_word.lower().strip().split(" ")
if bool(
re.search(
r"\b" + r"\s+".join(map(re.escape, stop_word)) + r"[.,!?]*\b",
text.lower(),
)
):
logger.debug("Stop word detected: %s", stop_word)
return True
return False
async def _send_stopword(
self,
):
if self.channel:
self.channel.send(create_message("stopword", ""))
logger.debug("Sent stopword")
def send_stopword(self):
asyncio.run_coroutine_threadsafe(self._send_stopword(), self.loop)
def determine_pause( # type: ignore
self, audio: np.ndarray, sampling_rate: int, state: ReplyOnStopWordsState
) -> bool:
"""Take in the stream, determine if a pause happened"""
import librosa
duration = len(audio) / sampling_rate
if duration >= self.algo_options.audio_chunk_duration:
if not state.stop_word_detected:
audio_f32 = audio_to_float32((sampling_rate, audio))
audio_rs = librosa.resample(
audio_f32, orig_sr=sampling_rate, target_sr=16000
)
if state.post_stop_word_buffer is None:
state.post_stop_word_buffer = audio_rs
else:
state.post_stop_word_buffer = np.concatenate(
(state.post_stop_word_buffer, audio_rs)
)
if len(state.post_stop_word_buffer) / 16000 > 2:
state.post_stop_word_buffer = state.post_stop_word_buffer[-32000:]
dur_vad, chunks = self.model.vad(
(16000, state.post_stop_word_buffer),
self.model_options,
)
text = stt_for_chunks(
self.stt_model, (16000, state.post_stop_word_buffer), chunks
)
logger.debug(f"STT: {text}")
state.stop_word_detected = self.stop_word_detected(text)
if state.stop_word_detected:
logger.debug("Stop word detected")
self.send_stopword()
state.buffer = None
else:
dur_vad, _ = self.model.vad((sampling_rate, audio), self.model_options)
logger.debug("VAD duration: %s", dur_vad)
if (
dur_vad > self.algo_options.started_talking_threshold
and not state.started_talking
and state.stop_word_detected
):
state.started_talking = True
logger.debug("Started talking")
if state.started_talking:
if state.stream is None:
state.stream = audio
else:
state.stream = np.concatenate((state.stream, audio))
state.buffer = None
if (
dur_vad < self.algo_options.speech_threshold
and state.started_talking
and state.stop_word_detected
):
return True
return False
def reset(self):
super().reset()
self.generator = None
self.event.clear()
self.state = ReplyOnStopWordsState()
def copy(self):
return ReplyOnStopWords(
self.fn,
self.stop_words,
self.startup_fn,
self.algo_options,
self.model_options,
self.can_interrupt,
self.expected_layout,
self.output_sample_rate,
self.output_frame_size,
self.input_sample_rate,
self.model,
)

View File

@@ -0,0 +1,3 @@
from .stt_ import MoonshineSTT, get_stt_model, stt_for_chunks
__all__ = ["get_stt_model", "MoonshineSTT", "get_stt_model", "stt_for_chunks"]

View File

@@ -0,0 +1,76 @@
from functools import lru_cache
from pathlib import Path
from typing import Literal, Protocol
import click
import librosa
import numpy as np
from numpy.typing import NDArray
from ..utils import AudioChunk, audio_to_float32
curr_dir = Path(__file__).parent
class STTModel(Protocol):
def stt(self, audio: tuple[int, NDArray[np.int16 | np.float32]]) -> str: ...
class MoonshineSTT(STTModel):
def __init__(
self, model: Literal["moonshine/base", "moonshine/tiny"] = "moonshine/base"
):
try:
from moonshine_onnx import MoonshineOnnxModel, load_tokenizer
except (ImportError, ModuleNotFoundError):
raise ImportError(
"Install fastrtc[stt] for speech-to-text and stopword detection support."
)
self.model = MoonshineOnnxModel(model_name=model)
self.tokenizer = load_tokenizer()
def stt(self, audio: tuple[int, NDArray[np.int16 | np.float32]]) -> str:
sr, audio_np = audio # type: ignore
if audio_np.dtype == np.int16:
audio_np = audio_to_float32(audio)
if sr != 16000:
audio_np: NDArray[np.float32] = librosa.resample(
audio_np, orig_sr=sr, target_sr=16000
)
if audio_np.ndim == 1:
audio_np = audio_np.reshape(1, -1)
tokens = self.model.generate(audio_np)
return self.tokenizer.decode_batch(tokens)[0]
@lru_cache
def get_stt_model(
model: Literal["moonshine/base", "moonshine/tiny"] = "moonshine/base",
) -> STTModel:
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
m = MoonshineSTT(model)
from moonshine_onnx import load_audio
audio = load_audio(str(curr_dir / "test_file.wav"))
print(click.style("INFO", fg="green") + ":\t Warming up STT model.")
m.stt((16000, audio))
print(click.style("INFO", fg="green") + ":\t STT model warmed up.")
return m
def stt_for_chunks(
stt_model: STTModel,
audio: tuple[int, NDArray[np.int16 | np.float32]],
chunks: list[AudioChunk],
) -> str:
sr, audio_np = audio
return " ".join(
[
stt_model.stt((sr, audio_np[chunk["start"] : chunk["end"]]))
for chunk in chunks
]
)

Binary file not shown.

721
backend/fastrtc/stream.py Normal file
View File

@@ -0,0 +1,721 @@
import logging
from pathlib import Path
from typing import (
Any,
AsyncContextManager,
Callable,
Literal,
TypedDict,
cast,
)
import gradio as gr
from fastapi import FastAPI, Request, WebSocket
from fastapi.responses import HTMLResponse
from gradio import Blocks
from gradio.components.base import Component
from pydantic import BaseModel
from typing_extensions import NotRequired
from .tracks import HandlerType, StreamHandlerImpl
from .webrtc import WebRTC
from .webrtc_connection_mixin import WebRTCConnectionMixin
from .websocket import WebSocketHandler
logger = logging.getLogger(__name__)
curr_dir = Path(__file__).parent
class Body(BaseModel):
sdp: str
type: str
webrtc_id: str
class UIArgs(TypedDict):
title: NotRequired[str]
"""Title of the demo"""
subtitle: NotRequired[str]
"""Subtitle of the demo. Text will be centered and displayed below the title."""
icon: NotRequired[str]
"""Icon to display on the button instead of the wave animation. The icon should be a path/url to a .svg/.png/.jpeg file."""
icon_button_color: NotRequired[str]
"""Color of the icon button. Default is var(--color-accent) of the demo theme."""
pulse_color: NotRequired[str]
"""Color of the pulse animation. Default is var(--color-accent) of the demo theme."""
icon_radius: NotRequired[int]
"""Border radius of the icon button expressed as a percentage of the button size. Default is 50%."""
class Stream(WebRTCConnectionMixin):
def __init__(
self,
handler: HandlerType,
*,
additional_outputs_handler: Callable | None = None,
mode: Literal["send-receive", "receive", "send"] = "send-receive",
modality: Literal["video", "audio", "audio-video"] = "video",
concurrency_limit: int | None | Literal["default"] = "default",
time_limit: float | None = None,
rtp_params: dict[str, Any] | None = None,
rtc_configuration: dict[str, Any] | None = None,
additional_inputs: list[Component] | None = None,
additional_outputs: list[Component] | None = None,
ui_args: UIArgs | None = None,
):
WebRTCConnectionMixin.__init__(self)
self.mode = mode
self.modality = modality
self.rtp_params = rtp_params
self.event_handler = handler
self.concurrency_limit = cast(
(int | float),
1 if concurrency_limit in ["default", None] else concurrency_limit,
)
self.time_limit = time_limit
self.additional_output_components = additional_outputs
self.additional_input_components = additional_inputs
self.additional_outputs_handler = additional_outputs_handler
self.rtc_configuration = rtc_configuration
self._ui = self._generate_default_ui(ui_args)
self._ui.launch = self._wrap_gradio_launch(self._ui.launch)
def mount(self, app: FastAPI):
app.router.post("/webrtc/offer")(self.offer)
app.router.websocket("/telephone/handler")(self.telephone_handler)
app.router.post("/telephone/incoming")(self.handle_incoming_call)
app.router.websocket("/websocket/offer")(self.websocket_offer)
lifespan = self._inject_startup_message(app.router.lifespan_context)
app.router.lifespan_context = lifespan
@staticmethod
def print_error(env: Literal["colab", "spaces"]):
import click
print(
click.style("ERROR", fg="red")
+ f":\t Running in {env} is not possible without providing a valid rtc_configuration. "
+ "See "
+ click.style("https://fastrtc.org/deployment/", fg="cyan")
+ " for more information."
)
raise RuntimeError(
f"Running in {env} is not possible without providing a valid rtc_configuration. "
+ "See https://fastrtc.org/deployment/ for more information."
)
def _check_colab_or_spaces(self):
from gradio.utils import colab_check, get_space
if colab_check() and not self.rtc_configuration:
self.print_error("colab")
if get_space() and not self.rtc_configuration:
self.print_error("spaces")
def _wrap_gradio_launch(self, callable):
import contextlib
def wrapper(*args, **kwargs):
lifespan = kwargs.get("app_kwargs", {}).get("lifespan", None)
@contextlib.asynccontextmanager
async def new_lifespan(app: FastAPI):
if lifespan is None:
self._check_colab_or_spaces()
yield
else:
async with lifespan(app):
self._check_colab_or_spaces()
yield
if "app_kwargs" not in kwargs:
kwargs["app_kwargs"] = {}
kwargs["app_kwargs"]["lifespan"] = new_lifespan
return callable(*args, **kwargs)
return wrapper
def _inject_startup_message(
self, lifespan: Callable[[FastAPI], AsyncContextManager] | None = None
):
import contextlib
import click
def print_startup_message():
self._check_colab_or_spaces()
print(
click.style("INFO", fg="green")
+ ":\t Visit "
+ click.style("https://fastrtc.org/userguide/api/", fg="cyan")
+ " for WebRTC or Websocket API docs."
)
@contextlib.asynccontextmanager
async def new_lifespan(app: FastAPI):
if lifespan is None:
print_startup_message()
yield
else:
async with lifespan(app):
print_startup_message()
yield
return new_lifespan
def _generate_default_ui(
self,
ui_args: UIArgs | None = None,
):
ui_args = ui_args or {}
same_components = []
additional_input_components = self.additional_input_components or []
additional_output_components = self.additional_output_components or []
if additional_output_components and not self.additional_outputs_handler:
raise ValueError(
"additional_outputs_handler must be provided if there are additional output components."
)
if additional_input_components and additional_output_components:
same_components = [
component
for component in additional_input_components
if component in additional_output_components
]
for component in additional_output_components:
if component in same_components:
same_components.append(component)
if self.modality == "video" and self.mode == "receive":
with gr.Blocks() as demo:
gr.HTML(
f"""
<h1 style='text-align: center'>
{ui_args.get("title", "Video Streaming (Powered by FastRTC ⚡️)")}
</h1>
"""
)
if ui_args.get("subtitle"):
gr.Markdown(
f"""
<div style='text-align: center'>
{ui_args.get("subtitle")}
</div>
"""
)
with gr.Row():
with gr.Column():
if additional_input_components:
for component in additional_input_components:
component.render()
button = gr.Button("Start Stream", variant="primary")
with gr.Column():
output_video = WebRTC(
label="Video Stream",
rtc_configuration=self.rtc_configuration,
mode="receive",
modality="video",
)
for component in additional_output_components:
if component not in same_components:
component.render()
output_video.stream(
fn=self.event_handler,
inputs=self.additional_input_components,
outputs=[output_video],
trigger=button.click,
time_limit=self.time_limit,
concurrency_limit=self.concurrency_limit, # type: ignore
)
if additional_output_components:
assert self.additional_outputs_handler
output_video.on_additional_outputs(
self.additional_outputs_handler,
inputs=additional_output_components,
outputs=additional_output_components,
)
elif self.modality == "video" and self.mode == "send":
with gr.Blocks() as demo:
gr.HTML(
f"""
<h1 style='text-align: center'>
{ui_args.get("title", "Video Streaming (Powered by FastRTC ⚡️)")}
</h1>
"""
)
if ui_args.get("subtitle"):
gr.Markdown(
f"""
<div style='text-align: center'>
{ui_args.get("subtitle")}
</div>
"""
)
with gr.Row():
if additional_input_components:
with gr.Column():
for component in additional_input_components:
component.render()
with gr.Column():
output_video = WebRTC(
label="Video Stream",
rtc_configuration=self.rtc_configuration,
mode="send",
modality="video",
)
for component in additional_output_components:
if component not in same_components:
component.render()
output_video.stream(
fn=self.event_handler,
inputs=[output_video] + additional_input_components,
outputs=[output_video],
time_limit=self.time_limit,
concurrency_limit=self.concurrency_limit, # type: ignore
)
if additional_output_components:
assert self.additional_outputs_handler
output_video.on_additional_outputs(
self.additional_outputs_handler,
inputs=additional_output_components,
outputs=additional_output_components,
)
elif self.modality == "video" and self.mode == "send-receive":
css = """.my-group {max-width: 600px !important; max-height: 600 !important;}
.my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<h1 style='text-align: center'>
{ui_args.get("title", "Video Streaming (Powered by FastRTC ⚡️)")}
</h1>
"""
)
if ui_args.get("subtitle"):
gr.Markdown(
f"""
<div style='text-align: center'>
{ui_args.get("subtitle")}
</div>
"""
)
with gr.Column(elem_classes=["my-column"]):
with gr.Group(elem_classes=["my-group"]):
image = WebRTC(
label="Stream",
rtc_configuration=self.rtc_configuration,
mode="send-receive",
modality="video",
)
for component in additional_input_components:
component.render()
if additional_output_components:
with gr.Column():
for component in additional_output_components:
if component not in same_components:
component.render()
image.stream(
fn=self.event_handler,
inputs=[image] + additional_input_components,
outputs=[image],
time_limit=self.time_limit,
concurrency_limit=self.concurrency_limit, # type: ignore
)
if additional_output_components:
assert self.additional_outputs_handler
image.on_additional_outputs(
self.additional_outputs_handler,
inputs=additional_output_components,
outputs=additional_output_components,
)
elif self.modality == "audio" and self.mode == "receive":
with gr.Blocks() as demo:
gr.HTML(
f"""
<h1 style='text-align: center'>
{ui_args.get("title", "Audio Streaming (Powered by FastRTC ⚡️)")}
</h1>
"""
)
if ui_args.get("subtitle"):
gr.Markdown(
f"""
<div style='text-align: center'>
{ui_args.get("subtitle")}
</div>
"""
)
with gr.Row():
with gr.Column():
for component in additional_input_components:
component.render()
button = gr.Button("Start Stream", variant="primary")
if additional_output_components:
with gr.Column():
output_video = WebRTC(
label="Audio Stream",
rtc_configuration=self.rtc_configuration,
mode="receive",
modality="audio",
icon=ui_args.get("icon"),
icon_button_color=ui_args.get("icon_button_color"),
pulse_color=ui_args.get("pulse_color"),
icon_radius=ui_args.get("icon_radius"),
)
for component in additional_output_components:
if component not in same_components:
component.render()
output_video.stream(
fn=self.event_handler,
inputs=self.additional_input_components,
outputs=[output_video],
trigger=button.click,
time_limit=self.time_limit,
concurrency_limit=self.concurrency_limit, # type: ignore
)
if additional_output_components:
assert self.additional_outputs_handler
output_video.on_additional_outputs(
self.additional_outputs_handler,
inputs=additional_output_components,
outputs=additional_output_components,
)
elif self.modality == "audio" and self.mode == "send":
with gr.Blocks() as demo:
gr.HTML(
f"""
<h1 style='text-align: center'>
{ui_args.get("title", "Audio Streaming (Powered by FastRTC ⚡️)")}
</h1>
"""
)
if ui_args.get("subtitle"):
gr.Markdown(
f"""
<div style='text-align: center'>
{ui_args.get("subtitle")}
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Group():
image = WebRTC(
label="Stream",
rtc_configuration=self.rtc_configuration,
mode="send",
modality="audio",
icon=ui_args.get("icon"),
icon_button_color=ui_args.get("icon_button_color"),
pulse_color=ui_args.get("pulse_color"),
icon_radius=ui_args.get("icon_radius"),
)
for component in additional_input_components:
if component not in same_components:
component.render()
if additional_output_components:
with gr.Column():
for component in additional_output_components:
component.render()
image.stream(
fn=self.event_handler,
inputs=[image] + additional_input_components,
outputs=[image],
time_limit=self.time_limit,
concurrency_limit=self.concurrency_limit, # type: ignore
)
if additional_output_components:
assert self.additional_outputs_handler
image.on_additional_outputs(
self.additional_outputs_handler,
inputs=additional_output_components,
outputs=additional_output_components,
)
elif self.modality == "audio" and self.mode == "send-receive":
with gr.Blocks() as demo:
gr.HTML(
f"""
<h1 style='text-align: center'>
{ui_args.get("title", "Audio Streaming (Powered by FastRTC ⚡️)")}
</h1>
"""
)
if ui_args.get("subtitle"):
gr.Markdown(
f"""
<div style='text-align: center'>
{ui_args.get("subtitle")}
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Group():
image = WebRTC(
label="Stream",
rtc_configuration=self.rtc_configuration,
mode="send-receive",
modality="audio",
icon=ui_args.get("icon"),
icon_button_color=ui_args.get("icon_button_color"),
pulse_color=ui_args.get("pulse_color"),
icon_radius=ui_args.get("icon_radius"),
)
for component in additional_input_components:
if component not in same_components:
component.render()
if additional_output_components:
with gr.Column():
for component in additional_output_components:
component.render()
image.stream(
fn=self.event_handler,
inputs=[image] + additional_input_components,
outputs=[image],
time_limit=self.time_limit,
concurrency_limit=self.concurrency_limit, # type: ignore
)
if additional_output_components:
assert self.additional_outputs_handler
image.on_additional_outputs(
self.additional_outputs_handler,
inputs=additional_output_components,
outputs=additional_output_components,
)
elif self.modality == "audio-video" and self.mode == "send-receive":
with gr.Blocks() as demo:
gr.HTML(
f"""
<h1 style='text-align: center'>
{ui_args.get("title", "Audio Video Streaming (Powered by FastRTC ⚡️)")}
</h1>
"""
)
if ui_args.get("subtitle"):
gr.Markdown(
f"""
<div style='text-align: center'>
{ui_args.get("subtitle")}
</div>
"""
)
with gr.Row():
with gr.Column():
with gr.Group():
image = WebRTC(
label="Stream",
rtc_configuration=self.rtc_configuration,
mode="send-receive",
modality="audio-video",
icon=ui_args.get("icon"),
icon_button_color=ui_args.get("icon_button_color"),
pulse_color=ui_args.get("pulse_color"),
icon_radius=ui_args.get("icon_radius"),
)
for component in additional_input_components:
if component not in same_components:
component.render()
if additional_output_components:
with gr.Column():
for component in additional_output_components:
component.render()
image.stream(
fn=self.event_handler,
inputs=[image] + additional_input_components,
outputs=[image],
time_limit=self.time_limit,
concurrency_limit=self.concurrency_limit, # type: ignore
)
if additional_output_components:
assert self.additional_outputs_handler
image.on_additional_outputs(
self.additional_outputs_handler,
inputs=additional_output_components,
outputs=additional_output_components,
)
else:
raise ValueError(f"Invalid modality: {self.modality} and mode: {self.mode}")
return demo
@property
def ui(self) -> Blocks:
return self._ui
@ui.setter
def ui(self, blocks: Blocks):
self._ui = blocks
async def offer(self, body: Body):
return await self.handle_offer(
body.model_dump(), set_outputs=self.set_additional_outputs(body.webrtc_id)
)
async def handle_incoming_call(self, request: Request):
from twilio.twiml.voice_response import Connect, VoiceResponse
response = VoiceResponse()
response.say("Connecting to the AI assistant.")
connect = Connect()
connect.stream(url=f"wss://{request.url.hostname}/telephone/handler")
response.append(connect)
response.say("The call has been disconnected.")
return HTMLResponse(content=str(response), media_type="application/xml")
async def telephone_handler(self, websocket: WebSocket):
handler = cast(StreamHandlerImpl, self.event_handler.copy()) # type: ignore
handler.phone_mode = True
async def set_handler(s: str, a: WebSocketHandler):
if len(self.connections) >= self.concurrency_limit: # type: ignore
await cast(WebSocket, a.websocket).send_json(
{
"status": "failed",
"meta": {
"error": "concurrency_limit_reached",
"limit": self.concurrency_limit,
},
}
)
await websocket.close()
return
ws = WebSocketHandler(
handler, set_handler, lambda s: None, lambda s: lambda a: None
)
await ws.handle_websocket(websocket)
async def websocket_offer(self, websocket: WebSocket):
handler = cast(StreamHandlerImpl, self.event_handler.copy()) # type: ignore
handler.phone_mode = False
async def set_handler(s: str, a: WebSocketHandler):
if len(self.connections) >= self.concurrency_limit: # type: ignore
await cast(WebSocket, a.websocket).send_json(
{
"status": "failed",
"meta": {
"error": "concurrency_limit_reached",
"limit": self.concurrency_limit,
},
}
)
await websocket.close()
return
self.connections[s] = [a] # type: ignore
def clean_up(s):
self.clean_up(s)
ws = WebSocketHandler(
handler, set_handler, clean_up, lambda s: self.set_additional_outputs(s)
)
await ws.handle_websocket(websocket)
def fastphone(
self,
token: str | None = None,
host: str = "127.0.0.1",
port: int = 8000,
**kwargs,
):
import atexit
import secrets
import threading
import time
import urllib.parse
import click
import httpx
import uvicorn
from gradio.networking import setup_tunnel
from gradio.tunneling import CURRENT_TUNNELS
from huggingface_hub import get_token
app = FastAPI()
self.mount(app)
t = threading.Thread(
target=uvicorn.run,
args=(app,),
kwargs={"host": host, "port": port, **kwargs},
)
t.start()
url = setup_tunnel(
host, port, share_token=secrets.token_urlsafe(32), share_server_address=None
)
host = urllib.parse.urlparse(url).netloc
URL = "https://api.fastrtc.org"
try:
r = httpx.post(
URL + "/register",
json={"url": host},
headers={"Authorization": token or get_token() or ""},
)
except Exception:
URL = "https://fastrtc-fastphone.hf.space"
r = httpx.post(
URL + "/register",
json={"url": host},
headers={"Authorization": token or get_token() or ""},
)
r.raise_for_status()
data = r.json()
code = f"{data['code']}"
phone_number = data["phone"]
reset_date = data["reset_date"]
print(
click.style("INFO", fg="green")
+ ":\t Your FastPhone is now live! Call "
+ click.style(phone_number, fg="cyan")
+ " and use code "
+ click.style(code, fg="cyan")
+ " to connect to your stream."
)
minutes = str(int(data["time_remaining"] // 60)).zfill(2)
seconds = str(int(data["time_remaining"] % 60)).zfill(2)
print(
click.style("INFO", fg="green")
+ ":\t You have "
+ click.style(f"{minutes}:{seconds}", fg="cyan")
+ " minutes remaining in your quota (Resetting on "
+ click.style(f"{reset_date}", fg="cyan")
+ ")"
)
print(
click.style("INFO", fg="green")
+ ":\t Visit "
+ click.style(
"https://fastrtc.org/userguide/audio/#telephone-integration",
fg="cyan",
)
+ " for information on making your handler compatible with phone usage."
)
def unregister():
httpx.post(
URL + "/unregister",
json={"url": host, "code": code},
headers={"Authorization": token or get_token() or ""},
)
atexit.register(unregister)
try:
while True:
time.sleep(0.1)
except (KeyboardInterrupt, OSError):
print(
click.style("INFO", fg="green")
+ ":\t Keyboard interruption in main thread... closing server."
)
unregister()
t.join(timeout=5)
for tunnel in CURRENT_TUNNELS:
tunnel.kill()

View File

@@ -0,0 +1,3 @@
from .tts import KokoroTTSOptions, get_tts_model
__all__ = ["get_tts_model", "KokoroTTSOptions"]

View File

@@ -0,0 +1,13 @@
from fastrtc.text_to_speech.tts import get_tts_model
def test_tts_long_prompt():
model = get_tts_model()
prompt = "It may be that this communication will be considered as a madman's freak but at any rate it must be admitted that in its clearness and frankness it left nothing to be desired The serious part of it was that the Federal Government had undertaken to treat a sale by auction as a valid concession of these undiscovered territories Opinions on the matter were many Some readers saw in it only one of those prodigious outbursts of American humbug which would exceed the limits of puffism if the depths of human credulity were not unfathomable"
for i, chunk in enumerate(model.stream_tts_sync(prompt)):
print(f"Chunk {i}: {chunk[1].shape}")
if __name__ == "__main__":
test_tts_long_prompt()

View File

@@ -0,0 +1,135 @@
import asyncio
import re
from dataclasses import dataclass
from functools import lru_cache
from typing import AsyncGenerator, Generator, Literal, Protocol
import numpy as np
from huggingface_hub import hf_hub_download
from numpy.typing import NDArray
class TTSOptions:
pass
class TTSModel(Protocol):
def tts(self, text: str) -> tuple[int, NDArray[np.float32]]: ...
async def stream_tts(
self, text: str, options: TTSOptions | None = None
) -> AsyncGenerator[tuple[int, NDArray[np.float32]], None]: ...
def stream_tts_sync(
self, text: str, options: TTSOptions | None = None
) -> Generator[tuple[int, NDArray[np.float32]], None, None]: ...
@dataclass
class KokoroTTSOptions(TTSOptions):
voice: str = "af_heart"
speed: float = 1.0
lang: str = "en-us"
@lru_cache
def get_tts_model(model: Literal["kokoro"] = "kokoro") -> TTSModel:
m = KokoroTTSModel()
m.tts("Hello, world!")
return m
class KokoroFixedBatchSize:
# Source: https://github.com/thewh1teagle/kokoro-onnx/issues/115#issuecomment-2676625392
def _split_phonemes(self, phonemes: str) -> list[str]:
MAX_PHONEME_LENGTH = 510
max_length = MAX_PHONEME_LENGTH - 1
batched_phonemes = []
while len(phonemes) > max_length:
# Find best split point within limit
split_idx = max_length
# Try to find the last period before max_length
period_idx = phonemes.rfind(".", 0, max_length)
if period_idx != -1:
split_idx = period_idx + 1 # Include period
else:
# Try other punctuation
match = re.search(
r"[!?;,]", phonemes[:max_length][::-1]
) # Search backwards
if match:
split_idx = max_length - match.start()
else:
# Try last space
space_idx = phonemes.rfind(" ", 0, max_length)
if space_idx != -1:
split_idx = space_idx
# If no good split point is found, force split at max_length
chunk = phonemes[:split_idx].strip()
batched_phonemes.append(chunk)
# Move to the next part
phonemes = phonemes[split_idx:].strip()
# Add remaining phonemes
if phonemes:
batched_phonemes.append(phonemes)
return batched_phonemes
class KokoroTTSModel(TTSModel):
def __init__(self):
from kokoro_onnx import Kokoro
self.model = Kokoro(
model_path=hf_hub_download("fastrtc/kokoro-onnx", "kokoro-v1.0.onnx"),
voices_path=hf_hub_download("fastrtc/kokoro-onnx", "voices-v1.0.bin"),
)
self.model._split_phonemes = KokoroFixedBatchSize()._split_phonemes
def tts(
self, text: str, options: KokoroTTSOptions | None = None
) -> tuple[int, NDArray[np.float32]]:
options = options or KokoroTTSOptions()
a, b = self.model.create(
text, voice=options.voice, speed=options.speed, lang=options.lang
)
return b, a
async def stream_tts(
self, text: str, options: KokoroTTSOptions | None = None
) -> AsyncGenerator[tuple[int, NDArray[np.float32]], None]:
options = options or KokoroTTSOptions()
sentences = re.split(r"(?<=[.!?])\s+", text.strip())
for s_idx, sentence in enumerate(sentences):
if not sentence.strip():
continue
chunk_idx = 0
async for chunk in self.model.create_stream(
sentence, voice=options.voice, speed=options.speed, lang=options.lang
):
if s_idx != 0 and chunk_idx == 0:
yield chunk[1], np.zeros(chunk[1] // 7, dtype=np.float32)
chunk_idx += 1
yield chunk[1], chunk[0]
def stream_tts_sync(
self, text: str, options: KokoroTTSOptions | None = None
) -> Generator[tuple[int, NDArray[np.float32]], None, None]:
loop = asyncio.new_event_loop()
# Use the new loop to run the async generator
iterator = self.stream_tts(text, options).__aiter__()
while True:
try:
yield loop.run_until_complete(iterator.__anext__())
except StopAsyncIteration:
break

731
backend/fastrtc/tracks.py Normal file
View File

@@ -0,0 +1,731 @@
"""WebRTC tracks."""
from __future__ import annotations
import asyncio
import functools
import inspect
import logging
import threading
import time
import traceback
from abc import ABC, abstractmethod
from collections.abc import Callable
from typing import (
Any,
Generator,
Literal,
TypeAlias,
Union,
cast,
)
import anyio.to_thread
import av
import numpy as np
from aiortc import (
AudioStreamTrack,
MediaStreamTrack,
VideoStreamTrack,
)
from aiortc.contrib.media import AudioFrame, VideoFrame # type: ignore
from aiortc.mediastreams import MediaStreamError
from numpy import typing as npt
from fastrtc.utils import (
AdditionalOutputs,
DataChannel,
WebRTCError,
create_message,
current_channel,
player_worker_decode,
split_output,
)
logger = logging.getLogger(__name__)
VideoNDArray: TypeAlias = Union[
np.ndarray[Any, np.dtype[np.uint8]],
np.ndarray[Any, np.dtype[np.uint16]],
np.ndarray[Any, np.dtype[np.float32]],
]
VideoEmitType = (
VideoNDArray | tuple[VideoNDArray, AdditionalOutputs] | AdditionalOutputs
)
VideoEventHandler = Callable[[npt.ArrayLike], VideoEmitType]
class VideoCallback(VideoStreamTrack):
"""
This works for streaming input and output
"""
kind = "video"
def __init__(
self,
track: MediaStreamTrack,
event_handler: VideoEventHandler,
channel: DataChannel | None = None,
set_additional_outputs: Callable | None = None,
mode: Literal["send-receive", "send"] = "send-receive",
) -> None:
super().__init__() # don't forget this!
self.track = track
self.event_handler = event_handler
self.latest_args: str | list[Any] = "not_set"
self.channel = channel
self.set_additional_outputs = set_additional_outputs
self.thread_quit = asyncio.Event()
self.mode = mode
self.channel_set = asyncio.Event()
self.has_started = False
def set_channel(self, channel: DataChannel):
self.channel = channel
current_channel.set(channel)
self.channel_set.set()
def set_args(self, args: list[Any]):
self.latest_args = ["__webrtc_value__"] + list(args)
def add_frame_to_payload(
self, args: list[Any], frame: np.ndarray | None
) -> list[Any]:
new_args = []
for val in args:
if isinstance(val, str) and val == "__webrtc_value__":
new_args.append(frame)
else:
new_args.append(val)
return new_args
def array_to_frame(self, array: np.ndarray) -> VideoFrame:
return VideoFrame.from_ndarray(array, format="bgr24")
async def process_frames(self):
while not self.thread_quit.is_set():
try:
await self.recv()
except TimeoutError:
continue
async def start(
self,
):
asyncio.create_task(self.process_frames())
def stop(self):
super().stop()
logger.debug("video callback stop")
self.thread_quit.set()
async def wait_for_channel(self):
if not self.channel_set.is_set():
await self.channel_set.wait()
if current_channel.get() != self.channel:
current_channel.set(self.channel)
async def recv(self): # type: ignore
try:
try:
frame = cast(VideoFrame, await self.track.recv())
except MediaStreamError:
self.stop()
return
await self.wait_for_channel()
frame_array = frame.to_ndarray(format="bgr24")
if self.latest_args == "not_set":
return frame
args = self.add_frame_to_payload(cast(list, self.latest_args), frame_array)
array, outputs = split_output(self.event_handler(*args))
if (
isinstance(outputs, AdditionalOutputs)
and self.set_additional_outputs
and self.channel
):
self.set_additional_outputs(outputs)
self.channel.send(create_message("fetch_output", []))
if array is None and self.mode == "send":
return
new_frame = self.array_to_frame(array)
if frame:
new_frame.pts = frame.pts
new_frame.time_base = frame.time_base
else:
pts, time_base = await self.next_timestamp()
new_frame.pts = pts
new_frame.time_base = time_base
return new_frame
except Exception as e:
logger.debug("exception %s", e)
exec = traceback.format_exc()
logger.debug("traceback %s", exec)
if isinstance(e, WebRTCError):
raise e
else:
raise WebRTCError(str(e)) from e
class StreamHandlerBase(ABC):
def __init__(
self,
expected_layout: Literal["mono", "stereo"] = "mono",
output_sample_rate: int = 24000,
output_frame_size: int = 960,
input_sample_rate: int = 48000,
) -> None:
self.expected_layout = expected_layout
self.output_sample_rate = output_sample_rate
self.output_frame_size = output_frame_size
self.input_sample_rate = input_sample_rate
self.latest_args: list[Any] = []
self._resampler = None
self._channel: DataChannel | None = None
self._loop: asyncio.AbstractEventLoop
self.args_set = asyncio.Event()
self.channel_set = asyncio.Event()
self._phone_mode = False
self._clear_queue: Callable | None = None
@property
def clear_queue(self) -> Callable:
return cast(Callable, self._clear_queue)
@property
def loop(self) -> asyncio.AbstractEventLoop:
return cast(asyncio.AbstractEventLoop, self._loop)
@property
def channel(self) -> DataChannel | None:
return self._channel
@property
def phone_mode(self) -> bool:
return self._phone_mode
@phone_mode.setter
def phone_mode(self, value: bool):
self._phone_mode = value
def set_channel(self, channel: DataChannel):
self._channel = channel
self.channel_set.set()
async def fetch_args(
self,
):
if self.channel:
self.channel.send(create_message("send_input", []))
logger.debug("Sent send_input")
async def wait_for_args(self):
if not self.phone_mode:
await self.fetch_args()
await self.args_set.wait()
else:
self.args_set.set()
def wait_for_args_sync(self):
try:
asyncio.run_coroutine_threadsafe(self.wait_for_args(), self.loop).result()
except Exception:
import traceback
traceback.print_exc()
async def send_message(self, msg: str):
if self.channel:
self.channel.send(msg)
logger.debug("Sent msg %s", msg)
def send_message_sync(self, msg: str):
try:
asyncio.run_coroutine_threadsafe(self.send_message(msg), self.loop).result()
logger.debug("Sent msg %s", msg)
except Exception as e:
logger.debug("Exception sending msg %s", e)
def set_args(self, args: list[Any]):
logger.debug("setting args in audio callback %s", args)
self.latest_args = ["__webrtc_value__"] + list(args)
self.args_set.set()
def reset(self):
self.args_set.clear()
def shutdown(self):
pass
def resample(self, frame: AudioFrame) -> Generator[AudioFrame, None, None]:
if self._resampler is None:
self._resampler = av.AudioResampler( # type: ignore
format="s16",
layout=self.expected_layout,
rate=self.input_sample_rate,
frame_size=frame.samples,
)
yield from self._resampler.resample(frame)
EmitType: TypeAlias = (
tuple[int, npt.NDArray[np.int16 | np.float32]]
| tuple[int, npt.NDArray[np.int16 | np.float32], Literal["mono", "stereo"]]
| AdditionalOutputs
| tuple[tuple[int, npt.NDArray[np.int16 | np.float32]], AdditionalOutputs]
| None
)
AudioEmitType = EmitType
class StreamHandler(StreamHandlerBase):
@abstractmethod
def receive(self, frame: tuple[int, npt.NDArray[np.int16]]) -> None:
pass
@abstractmethod
def emit(self) -> EmitType:
pass
@abstractmethod
def copy(self) -> StreamHandler:
pass
def start_up(self):
pass
class AsyncStreamHandler(StreamHandlerBase):
@abstractmethod
async def receive(self, frame: tuple[int, npt.NDArray[np.int16]]) -> None:
pass
@abstractmethod
async def emit(self) -> EmitType:
pass
@abstractmethod
def copy(self) -> AsyncStreamHandler:
pass
async def start_up(self):
pass
StreamHandlerImpl = StreamHandler | AsyncStreamHandler
class AudioVideoStreamHandler(StreamHandler):
@abstractmethod
def video_receive(self, frame: VideoFrame) -> None:
pass
@abstractmethod
def video_emit(self) -> VideoEmitType:
pass
@abstractmethod
def copy(self) -> AudioVideoStreamHandler:
pass
class AsyncAudioVideoStreamHandler(AsyncStreamHandler):
@abstractmethod
async def video_receive(self, frame: npt.NDArray[np.float32]) -> None:
pass
@abstractmethod
async def video_emit(self) -> VideoEmitType:
pass
@abstractmethod
def copy(self) -> AsyncAudioVideoStreamHandler:
pass
VideoStreamHandlerImpl = AudioVideoStreamHandler | AsyncAudioVideoStreamHandler
AudioVideoStreamHandlerImpl = AudioVideoStreamHandler | AsyncAudioVideoStreamHandler
AsyncHandler = AsyncStreamHandler | AsyncAudioVideoStreamHandler
HandlerType = StreamHandlerImpl | VideoStreamHandlerImpl | VideoEventHandler | Callable
class VideoStreamHandler(VideoCallback):
async def process_frames(self):
while not self.thread_quit.is_set():
try:
await self.channel_set.wait()
frame = cast(VideoFrame, await self.track.recv())
frame_array = frame.to_ndarray(format="bgr24")
handler = cast(VideoStreamHandlerImpl, self.event_handler)
if inspect.iscoroutinefunction(handler.video_receive):
await handler.video_receive(frame_array)
else:
handler.video_receive(frame_array) # type: ignore
except MediaStreamError:
self.stop()
async def start(self):
if not self.has_started:
asyncio.create_task(self.process_frames())
self.has_started = True
async def recv(self): # type: ignore
await self.start()
try:
handler = cast(VideoStreamHandlerImpl, self.event_handler)
if inspect.iscoroutinefunction(handler.video_emit):
outputs = await handler.video_emit()
else:
outputs = handler.video_emit()
array, outputs = split_output(outputs)
if (
isinstance(outputs, AdditionalOutputs)
and self.set_additional_outputs
and self.channel
):
self.set_additional_outputs(outputs)
self.channel.send(create_message("fetch_output", []))
if array is None and self.mode == "send":
return
new_frame = self.array_to_frame(array)
# Will probably have to give developer ability to set pts and time_base
pts, time_base = await self.next_timestamp()
new_frame.pts = pts
new_frame.time_base = time_base
return new_frame
except Exception as e:
logger.debug("exception %s", e)
exec = traceback.format_exc()
logger.debug("traceback %s", exec)
class AudioCallback(AudioStreamTrack):
kind = "audio"
def __init__(
self,
track: MediaStreamTrack,
event_handler: StreamHandlerBase,
channel: DataChannel | None = None,
set_additional_outputs: Callable | None = None,
) -> None:
super().__init__()
self.track = track
self.event_handler = cast(StreamHandlerImpl, event_handler)
self.event_handler._clear_queue = self.clear_queue
self.current_timestamp = 0
self.latest_args: str | list[Any] = "not_set"
self.queue = asyncio.Queue()
self.thread_quit = asyncio.Event()
self._start: float | None = None
self.has_started = False
self.last_timestamp = 0
self.channel = channel
self.set_additional_outputs = set_additional_outputs
def clear_queue(self):
logger.debug("clearing queue")
logger.debug("queue size: %d", self.queue.qsize())
i = 0
while not self.queue.empty():
self.queue.get_nowait()
i += 1
logger.debug("popped %d items from queue", i)
self._start = None
async def wait_for_channel(self):
if not self.event_handler.channel_set.is_set():
await self.event_handler.channel_set.wait()
if current_channel.get() != self.event_handler.channel:
current_channel.set(self.event_handler.channel)
def set_channel(self, channel: DataChannel):
self.channel = channel
self.event_handler.set_channel(channel)
def set_args(self, args: list[Any]):
self.event_handler.set_args(args)
def event_handler_receive(self, frame: tuple[int, np.ndarray]) -> None:
current_channel.set(self.event_handler.channel)
return cast(Callable, self.event_handler.receive)(frame)
def event_handler_emit(self) -> EmitType:
current_channel.set(self.event_handler.channel)
return cast(Callable, self.event_handler.emit)()
async def process_input_frames(self) -> None:
while not self.thread_quit.is_set():
try:
frame = cast(AudioFrame, await self.track.recv())
for frame in self.event_handler.resample(frame):
numpy_array = frame.to_ndarray()
if isinstance(self.event_handler, AsyncHandler):
await self.event_handler.receive(
(frame.sample_rate, numpy_array) # type: ignore
)
else:
await anyio.to_thread.run_sync(
self.event_handler_receive, (frame.sample_rate, numpy_array)
)
except MediaStreamError:
logger.debug("MediaStreamError in process_input_frames")
break
async def start(self):
if not self.has_started:
loop = asyncio.get_running_loop()
await self.wait_for_channel()
if isinstance(self.event_handler, AsyncHandler):
callable = self.event_handler.emit
start_up = self.event_handler.start_up()
if not inspect.isawaitable(start_up):
raise WebRTCError(
"In AsyncStreamHandler, start_up must be a coroutine (async def)"
)
else:
callable = functools.partial(
loop.run_in_executor, None, self.event_handler_emit
)
start_up = anyio.to_thread.run_sync(self.event_handler.start_up)
self.process_input_task = asyncio.create_task(self.process_input_frames())
self.process_input_task.add_done_callback(
lambda _: logger.debug("process_input_done")
)
self.start_up_task = asyncio.create_task(start_up)
self.start_up_task.add_done_callback(
lambda _: logger.debug("start_up_done")
)
self.decode_task = asyncio.create_task(
player_worker_decode(
callable,
self.queue,
self.thread_quit,
lambda: self.channel,
self.set_additional_outputs,
False,
self.event_handler.output_sample_rate,
self.event_handler.output_frame_size,
)
)
self.decode_task.add_done_callback(lambda _: logger.debug("decode_done"))
self.has_started = True
async def recv(self): # type: ignore
try:
if self.readyState != "live":
raise MediaStreamError
if not self.event_handler.channel_set.is_set():
await self.event_handler.channel_set.wait()
if current_channel.get() != self.event_handler.channel:
current_channel.set(self.event_handler.channel)
await self.start()
frame = await self.queue.get()
logger.debug("frame %s", frame)
data_time = frame.time
if time.time() - self.last_timestamp > 10 * (
self.event_handler.output_frame_size
/ self.event_handler.output_sample_rate
):
self._start = None
# control playback rate
if self._start is None:
self._start = time.time() - data_time # type: ignore
else:
wait = self._start + data_time - time.time()
await asyncio.sleep(wait)
self.last_timestamp = time.time()
return frame
except Exception as e:
logger.debug("exception %s", e)
exec = traceback.format_exc()
logger.debug("traceback %s", exec)
def stop(self):
logger.debug("audio callback stop")
self.thread_quit.set()
super().stop()
class ServerToClientVideo(VideoStreamTrack):
"""
This works for streaming input and output
"""
kind = "video"
def __init__(
self,
event_handler: Callable,
channel: DataChannel | None = None,
set_additional_outputs: Callable | None = None,
) -> None:
super().__init__() # don't forget this!
self.event_handler = event_handler
self.args_set = asyncio.Event()
self.latest_args: str | list[Any] = "not_set"
self.generator: Generator[Any, None, Any] | None = None
self.channel = channel
self.set_additional_outputs = set_additional_outputs
def array_to_frame(self, array: np.ndarray) -> VideoFrame:
return VideoFrame.from_ndarray(array, format="bgr24")
def set_channel(self, channel: DataChannel):
self.channel = channel
def set_args(self, args: list[Any]):
self.latest_args = list(args)
self.args_set.set()
async def recv(self): # type: ignore
try:
pts, time_base = await self.next_timestamp()
await self.args_set.wait()
current_channel.set(self.channel)
if self.generator is None:
self.generator = cast(
Generator[Any, None, Any], self.event_handler(*self.latest_args)
)
try:
next_array, outputs = split_output(next(self.generator))
if (
isinstance(outputs, AdditionalOutputs)
and self.set_additional_outputs
and self.channel
):
self.set_additional_outputs(outputs)
self.channel.send(create_message("fetch_output", []))
except StopIteration:
self.stop()
return
next_frame = self.array_to_frame(next_array)
next_frame.pts = pts
next_frame.time_base = time_base
return next_frame
except Exception as e:
logger.debug("exception %s", e)
exec = traceback.format_exc()
logger.debug("traceback %s %s", e, exec)
if isinstance(e, WebRTCError):
raise e
else:
raise WebRTCError(str(e)) from e
class ServerToClientAudio(AudioStreamTrack):
kind = "audio"
def __init__(
self,
event_handler: Callable,
channel: DataChannel | None = None,
set_additional_outputs: Callable | None = None,
) -> None:
self.generator: Generator[Any, None, Any] | None = None
self.event_handler = event_handler
self.event_handler._clear_queue = self.clear_queue
self.current_timestamp = 0
self.latest_args: str | list[Any] = "not_set"
self.args_set = threading.Event()
self.queue = asyncio.Queue()
self.thread_quit = asyncio.Event()
self.channel = channel
self.set_additional_outputs = set_additional_outputs
self.has_started = False
self._start: float | None = None
super().__init__()
def clear_queue(self):
while not self.queue.empty():
self.queue.get_nowait()
self._start = None
def set_channel(self, channel: DataChannel):
self.channel = channel
def set_args(self, args: list[Any]):
self.latest_args = list(args)
self.args_set.set()
def next(self) -> tuple[int, np.ndarray] | None:
self.args_set.wait()
current_channel.set(self.channel)
if self.generator is None:
self.generator = self.event_handler(*self.latest_args)
if self.generator is not None:
try:
frame = next(self.generator)
return frame
except StopIteration:
self.thread_quit.set()
async def start(self):
if not self.has_started:
loop = asyncio.get_running_loop()
callable = functools.partial(loop.run_in_executor, None, self.next)
asyncio.create_task(
player_worker_decode(
callable,
self.queue,
self.thread_quit,
lambda: self.channel,
self.set_additional_outputs,
True,
)
)
self.has_started = True
async def recv(self): # type: ignore
try:
if self.readyState != "live":
raise MediaStreamError
await self.start()
data = await self.queue.get()
if data is None:
self.stop()
return
data_time = data.time
# control playback rate
if data_time is not None:
if self._start is None:
self._start = time.time() - data_time # type: ignore
else:
wait = self._start + data_time - time.time()
await asyncio.sleep(wait)
return data
except Exception as e:
logger.debug("exception %s", e)
exec = traceback.format_exc()
logger.debug("traceback %s", exec)
if isinstance(e, WebRTCError):
raise e
else:
raise WebRTCError(str(e)) from e
def stop(self):
logger.debug("audio-to-client stop callback")
self.thread_quit.set()
super().stop()

456
backend/fastrtc/utils.py Normal file
View File

@@ -0,0 +1,456 @@
import asyncio
import fractions
import functools
import inspect
import io
import json
import logging
import tempfile
import traceback
from contextvars import ContextVar
from typing import Any, Callable, Literal, Protocol, TypedDict, cast
import av
import numpy as np
from numpy.typing import NDArray
from pydub import AudioSegment
logger = logging.getLogger(__name__)
AUDIO_PTIME = 0.020
class Message(TypedDict):
type: str
data: Any
class AudioChunk(TypedDict):
start: int
end: int
class AdditionalOutputs:
def __init__(self, *args) -> None:
self.args = args
class DataChannel(Protocol):
def send(self, message: str) -> None: ...
def create_message(
type: Literal[
"send_input",
"fetch_output",
"stopword",
"error",
"warning",
"log",
],
data: list[Any] | str,
) -> str:
return json.dumps({"type": type, "data": data})
current_channel: ContextVar[DataChannel | None] = ContextVar(
"current_channel", default=None
)
def _send_log(message: str, type: str) -> None:
async def _send(channel: DataChannel) -> None:
channel.send(
json.dumps(
{
"type": type,
"message": message,
}
)
)
if channel := current_channel.get():
try:
loop = asyncio.get_running_loop()
asyncio.run_coroutine_threadsafe(_send(channel), loop)
except RuntimeError:
asyncio.run(_send(channel))
def Warning( # noqa: N802
message: str = "Warning issued.",
):
"""
Send a warning message that is deplayed in the UI of the application.
Parameters
----------
audio : str
The warning message to send
Returns
-------
None
"""
_send_log(message, "warning")
class WebRTCError(Exception):
def __init__(self, message: str) -> None:
super().__init__(message)
_send_log(message, "error")
def split_output(data: tuple | Any) -> tuple[Any, AdditionalOutputs | None]:
if isinstance(data, AdditionalOutputs):
return None, data
if isinstance(data, tuple):
# handle the bare audio case
if 2 <= len(data) <= 3 and isinstance(data[1], np.ndarray):
return data, None
if not len(data) == 2:
raise ValueError(
"The tuple must have exactly two elements: the data and an instance of AdditionalOutputs."
)
if not isinstance(data[-1], AdditionalOutputs):
raise ValueError(
"The last element of the tuple must be an instance of AdditionalOutputs."
)
return data[0], cast(AdditionalOutputs, data[1])
return data, None
async def player_worker_decode(
next_frame: Callable,
queue: asyncio.Queue,
thread_quit: asyncio.Event,
channel: Callable[[], DataChannel | None] | None,
set_additional_outputs: Callable | None,
quit_on_none: bool = False,
sample_rate: int = 48000,
frame_size: int = int(48000 * AUDIO_PTIME),
):
audio_samples = 0
audio_time_base = fractions.Fraction(1, sample_rate)
audio_resampler = av.AudioResampler( # type: ignore
format="s16",
layout="stereo",
rate=sample_rate,
frame_size=frame_size,
)
while not thread_quit.is_set():
try:
# Get next frame
frame, outputs = split_output(
await asyncio.wait_for(next_frame(), timeout=60)
)
if (
isinstance(outputs, AdditionalOutputs)
and set_additional_outputs
and channel
and channel()
):
set_additional_outputs(outputs)
cast(DataChannel, channel()).send(create_message("fetch_output", []))
if frame is None:
if quit_on_none:
await queue.put(None)
break
continue
if not isinstance(frame, tuple) and not isinstance(frame[1], np.ndarray):
raise WebRTCError(
"The frame must be a tuple containing a sample rate and a numpy array."
)
if len(frame) == 2:
sample_rate, audio_array = frame
layout = "mono"
elif len(frame) == 3:
sample_rate, audio_array, layout = frame
logger.debug(
"received array with shape %s sample rate %s layout %s",
audio_array.shape, # type: ignore
sample_rate,
layout, # type: ignore
)
format = "s16" if audio_array.dtype == "int16" else "fltp" # type: ignore
if audio_array.ndim == 1:
audio_array = audio_array.reshape(1, -1)
# Convert to audio frame and resample
# This runs in the same timeout context
frame = av.AudioFrame.from_ndarray( # type: ignore
audio_array, # type: ignore
format=format,
layout=layout, # type: ignore
)
frame.sample_rate = sample_rate
for processed_frame in audio_resampler.resample(frame):
processed_frame.pts = audio_samples
processed_frame.time_base = audio_time_base
audio_samples += processed_frame.samples
await queue.put(processed_frame)
except (TimeoutError, asyncio.TimeoutError):
logger.warning(
"Timeout in frame processing cycle after %s seconds - resetting", 60
)
continue
except Exception as e:
import traceback
exec = traceback.format_exc()
print("traceback %s", exec)
print("Error processing frame: %s", str(e))
if isinstance(e, WebRTCError):
raise e
else:
continue
def audio_to_bytes(audio: tuple[int, NDArray[np.int16 | np.float32]]) -> bytes:
"""
Convert an audio tuple containing sample rate and numpy array data into bytes.
Parameters
----------
audio : tuple[int, np.ndarray]
A tuple containing:
- sample_rate (int): The audio sample rate in Hz
- data (np.ndarray): The audio data as a numpy array
Returns
-------
bytes
The audio data encoded as bytes, suitable for transmission or storage
Example
-------
>>> sample_rate = 44100
>>> audio_data = np.array([0.1, -0.2, 0.3]) # Example audio samples
>>> audio_tuple = (sample_rate, audio_data)
>>> audio_bytes = audio_to_bytes(audio_tuple)
"""
audio_buffer = io.BytesIO()
segment = AudioSegment(
audio[1].tobytes(),
frame_rate=audio[0],
sample_width=audio[1].dtype.itemsize,
channels=1,
)
segment.export(audio_buffer, format="mp3")
return audio_buffer.getvalue()
def audio_to_file(audio: tuple[int, NDArray[np.int16 | np.float32]]) -> str:
"""
Save an audio tuple containing sample rate and numpy array data to a file.
Parameters
----------
audio : tuple[int, np.ndarray]
A tuple containing:
- sample_rate (int): The audio sample rate in Hz
- data (np.ndarray): The audio data as a numpy array
Returns
-------
str
The path to the saved audio file
Example
-------
>>> sample_rate = 44100
>>> audio_data = np.array([0.1, -0.2, 0.3]) # Example audio samples
>>> audio_tuple = (sample_rate, audio_data)
>>> file_path = audio_to_file(audio_tuple)
>>> print(f"Audio saved to: {file_path}")
"""
bytes_ = audio_to_bytes(audio)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
f.write(bytes_)
return f.name
def audio_to_float32(
audio: tuple[int, NDArray[np.int16 | np.float32]],
) -> NDArray[np.float32]:
"""
Convert an audio tuple containing sample rate (int16) and numpy array data to float32.
Parameters
----------
audio : tuple[int, np.ndarray]
A tuple containing:
- sample_rate (int): The audio sample rate in Hz
- data (np.ndarray): The audio data as a numpy array
Returns
-------
np.ndarray
The audio data as a numpy array with dtype float32
Example
-------
>>> sample_rate = 44100
>>> audio_data = np.array([0.1, -0.2, 0.3]) # Example audio samples
>>> audio_tuple = (sample_rate, audio_data)
>>> audio_float32 = audio_to_float32(audio_tuple)
"""
return audio[1].astype(np.float32) / 32768.0
def audio_to_int16(
audio: tuple[int, NDArray[np.int16 | np.float32]],
) -> NDArray[np.int16]:
"""
Convert an audio tuple containing sample rate and numpy array data to int16.
Parameters
----------
audio : tuple[int, np.ndarray]
A tuple containing:
- sample_rate (int): The audio sample rate in Hz
- data (np.ndarray): The audio data as a numpy array
Returns
-------
np.ndarray
The audio data as a numpy array with dtype int16
Example
-------
>>> sample_rate = 44100
>>> audio_data = np.array([0.1, -0.2, 0.3], dtype=np.float32) # Example audio samples
>>> audio_tuple = (sample_rate, audio_data)
>>> audio_int16 = audio_to_int16(audio_tuple)
"""
if audio[1].dtype == np.int16:
return audio[1] # type: ignore
elif audio[1].dtype == np.float32:
# Convert float32 to int16 by scaling to the int16 range
return (audio[1] * 32767.0).astype(np.int16)
else:
raise TypeError(f"Unsupported audio data type: {audio[1].dtype}")
def aggregate_bytes_to_16bit(chunks_iterator):
"""
Aggregate bytes to 16-bit audio samples.
This function takes an iterator of chunks and aggregates them into 16-bit audio samples.
It handles incomplete samples and combines them with the next chunk.
Parameters
----------
chunks_iterator : Iterator[bytes]
An iterator of byte chunks to aggregate
Returns
-------
Iterator[NDArray[np.int16]]
"""
leftover = b""
for chunk in chunks_iterator:
current_bytes = leftover + chunk
n_complete_samples = len(current_bytes) // 2
bytes_to_process = n_complete_samples * 2
to_process = current_bytes[:bytes_to_process]
leftover = current_bytes[bytes_to_process:]
if to_process:
audio_array = np.frombuffer(to_process, dtype=np.int16).reshape(1, -1)
yield audio_array
async def async_aggregate_bytes_to_16bit(chunks_iterator):
"""
Aggregate bytes to 16-bit audio samples.
This function takes an iterator of chunks and aggregates them into 16-bit audio samples.
It handles incomplete samples and combines them with the next chunk.
Parameters
----------
chunks_iterator : Iterator[bytes]
An iterator of byte chunks to aggregate
Returns
-------
Iterator[NDArray[np.int16]]
An iterator of 16-bit audio samples
"""
leftover = b""
async for chunk in chunks_iterator:
current_bytes = leftover + chunk
n_complete_samples = len(current_bytes) // 2
bytes_to_process = n_complete_samples * 2
to_process = current_bytes[:bytes_to_process]
leftover = current_bytes[bytes_to_process:]
if to_process:
audio_array = np.frombuffer(to_process, dtype=np.int16).reshape(1, -1)
yield audio_array
def webrtc_error_handler(func):
"""Decorator to catch exceptions and raise WebRTCError with stacktrace."""
@functools.wraps(func)
async def async_wrapper(*args, **kwargs):
try:
return await func(*args, **kwargs)
except Exception as e:
traceback.print_exc()
if isinstance(e, WebRTCError):
raise e
else:
raise WebRTCError(str(e)) from e
@functools.wraps(func)
def sync_wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
traceback.print_exc()
if isinstance(e, WebRTCError):
raise e
else:
raise WebRTCError(str(e)) from e
return async_wrapper if inspect.iscoroutinefunction(func) else sync_wrapper
async def wait_for_item(queue: asyncio.Queue, timeout: float = 0.1) -> Any:
"""
Wait for an item from an asyncio.Queue with a timeout.
This function attempts to retrieve an item from the queue using asyncio.wait_for.
If the timeout is reached, it returns None.
This is useful to avoid blocking `emit` when the queue is empty.
"""
try:
return await asyncio.wait_for(queue.get(), timeout=timeout)
except (TimeoutError, asyncio.TimeoutError):
return None
def parse_json_safely(str: str):
try:
result = json.loads(str)
return result, None
except json.JSONDecodeError as e:
print(f"JSON解析错误: {e.msg}")
return None, e

370
backend/fastrtc/webrtc.py Normal file
View File

@@ -0,0 +1,370 @@
"""gr.WebRTC() component."""
from __future__ import annotations
import logging
# logging.basicConfig(level=logging.DEBUG)
from collections.abc import Callable
from typing import (
TYPE_CHECKING,
Any,
Concatenate,
Iterable,
Literal,
ParamSpec,
Sequence,
TypeVar,
cast,
)
from gradio import wasm_utils
from gradio.components.base import Component, server
from gradio_client import handle_file
from .tracks import (
AudioVideoStreamHandlerImpl,
StreamHandler,
StreamHandlerBase,
StreamHandlerImpl,
VideoEventHandler,
)
from .webrtc_connection_mixin import WebRTCConnectionMixin
if TYPE_CHECKING:
from gradio.blocks import Block
from gradio.components import Timer
if wasm_utils.IS_WASM:
raise ValueError("Not supported in gradio-lite!")
logger = logging.getLogger(__name__)
# For the return type
R = TypeVar("R")
# For the parameter specification
P = ParamSpec("P")
class WebRTC(Component, WebRTCConnectionMixin):
"""
Creates a video component that can be used to upload/record videos (as an input) or display videos (as an output).
For the video to be playable in the browser it must have a compatible container and codec combination. Allowed
combinations are .mp4 with h264 codec, .ogg with theora codec, and .webm with vp9 codec. If the component detects
that the output video would not be playable in the browser it will attempt to convert it to a playable mp4 video.
If the conversion fails, the original video is returned.
Demos: video_identity_2
"""
EVENTS = ["tick", "state_change"]
def __init__(
self,
value: None = None,
height: int | str | None = None,
width: int | str | None = None,
label: str | None = None,
every: Timer | float | None = None,
inputs: Component | Sequence[Component] | set[Component] | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
interactive: bool | None = None,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
key: int | str | None = None,
mirror_webcam: bool = True,
rtc_configuration: dict[str, Any] | None = None,
track_constraints: dict[str, Any] | None = None,
time_limit: float | None = None,
mode: Literal["send-receive", "receive", "send"] = "send-receive",
modality: Literal["video", "audio", "audio-video"] = "video",
rtp_params: dict[str, Any] | None = None,
icon: str | None = None,
icon_button_color: str | None = None,
pulse_color: str | None = None,
icon_radius: int | None = None,
button_labels: dict | None = None,
video_chat: bool = True,
):
"""
Parameters:
value: path or URL for the default value that WebRTC component is going to take. Can also be a tuple consisting of (video filepath, subtitle filepath). If a subtitle file is provided, it should be of type .srt or .vtt. Or can be callable, in which case the function will be called whenever the app loads to set the initial value of the component.
format: the file extension with which to save video, such as 'avi' or 'mp4'. This parameter applies both when this component is used as an input to determine which file format to convert user-provided video to, and when this component is used as an output to determine the format of video returned to the user. If None, no file format conversion is done and the video is kept as is. Use 'mp4' to ensure browser playability.
height: The height of the component, specified in pixels if a number is passed, or in CSS units if a string is passed. This has no effect on the preprocessed video file, but will affect the displayed video.
width: The width of the component, specified in pixels if a number is passed, or in CSS units if a string is passed. This has no effect on the preprocessed video file, but will affect the displayed video.
label: the label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
inputs: components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change.
show_label: if True, will display label.
container: if True, will place the component in a container - providing some extra padding around the border.
scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
interactive: if True, will allow users to upload a video; if False, can only be used to display videos. If not provided, this is inferred based on whether the component is used as an input or output.
visible: if False, component will be hidden.
elem_id: an optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: an optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: if False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
mirror_webcam: if True webcam will be mirrored. Default is True.
rtc_configuration: WebRTC configuration options. See https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/RTCPeerConnection . If running the demo on a remote server, you will need to specify a rtc_configuration. See https://freddyaboulton.github.io/gradio-webrtc/deployment/
track_constraints: Media track constraints for WebRTC. For example, to set video height, width use {"width": {"exact": 800}, "height": {"exact": 600}, "aspectRatio": {"exact": 1.33333}}
time_limit: Maximum duration in seconds for recording.
mode: WebRTC mode - "send-receive", "receive", or "send".
modality: Type of media - "video" or "audio".
rtp_params: See https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpSender/setParameters. If you are changing the video resolution, you can set this to {"degradationPreference": "maintain-framerate"} to keep the frame rate consistent.
icon: Icon to display on the button instead of the wave animation. The icon should be a path/url to a .svg/.png/.jpeg file.
icon_button_color: Color of the icon button. Default is var(--color-accent) of the demo theme.
pulse_color: Color of the pulse animation. Default is var(--color-accent) of the demo theme.
button_labels: Text to display on the audio or video start, stop, waiting buttons. Dict with keys "start", "stop", "waiting" mapping to the text to display on the buttons.
icon_radius: Border radius of the icon button expressed as a percentage of the button size. Default is 50%
"""
WebRTCConnectionMixin.__init__(self)
self.time_limit = time_limit
self.height = height
self.width = width
self.mirror_webcam = mirror_webcam
self.concurrency_limit = 1
self.rtc_configuration = rtc_configuration
self.mode = mode
self.modality = modality
self.icon_button_color = icon_button_color
self.icon_radius = icon_radius
self.pulse_color = pulse_color
self.rtp_params = rtp_params or {}
self.video_chat = video_chat
self.button_labels = {
"start": "",
"stop": "",
"waiting": "",
**(button_labels or {}),
}
if track_constraints is None and modality == "audio":
track_constraints = {
"echoCancellation": True,
"noiseSuppression": {"exact": True},
"autoGainControl": {"exact": True},
"sampleRate": {"ideal": 24000},
"sampleSize": {"ideal": 16},
"channelCount": {"exact": 1},
}
if track_constraints is None and modality == "video":
track_constraints = {
"facingMode": "user",
"width": {"ideal": 500},
"height": {"ideal": 500},
"frameRate": {"ideal": 30},
}
if track_constraints is None and modality == "audio-video":
track_constraints = {
"video": {
"facingMode": "user",
"width": {"ideal": 500},
"height": {"ideal": 500},
"frameRate": {"ideal": 30},
},
"audio": {
"echoCancellation": True,
"noiseSuppression": {"exact": True},
"autoGainControl": {"exact": True},
"sampleRate": {"ideal": 24000},
"sampleSize": {"ideal": 16},
"channelCount": {"exact": 1},
},
}
self.track_constraints = track_constraints
self.event_handler: Callable | StreamHandler | None = None
super().__init__(
label=label,
every=every,
inputs=inputs,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
interactive=interactive,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
key=key,
value=value,
)
# need to do this here otherwise the proxy_url is not set
self.icon = (
icon if not icon else cast(dict, self.serve_static_file(icon)).get("url")
)
def preprocess(self, payload: str) -> str:
"""
Parameters:
payload: An instance of VideoData containing the video and subtitle files.
Returns:
Passes the uploaded video as a `str` filepath or URL whose extension can be modified by `format`.
"""
return payload
def postprocess(self, value: Any) -> str:
"""
Parameters:
value: Expects a {str} or {pathlib.Path} filepath to a video which is displayed, or a {Tuple[str | pathlib.Path, str | pathlib.Path | None]} where the first element is a filepath to a video and the second element is an optional filepath to a subtitle file.
Returns:
VideoData object containing the video and subtitle files.
"""
return value
def on_additional_outputs(
self,
fn: Callable[Concatenate[P], R],
inputs: Block | Sequence[Block] | set[Block] | None = None,
outputs: Block | Sequence[Block] | set[Block] | None = None,
js: str | None = None,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
show_progress: Literal["full", "minimal", "hidden"] = "full",
queue: bool = True,
):
inputs = inputs or []
if inputs and not isinstance(inputs, Iterable):
inputs = [inputs]
inputs = list(inputs)
async def handler(webrtc_id: str, *args):
async for next_outputs in self.output_stream(webrtc_id):
yield fn(*args, *next_outputs.args) # type: ignore
return self.state_change( # type: ignore
fn=handler,
inputs=[self] + cast(list, inputs),
outputs=outputs,
js=js,
concurrency_limit=concurrency_limit,
concurrency_id=concurrency_id,
show_progress="minimal",
queue=queue,
trigger_mode="once",
)
def stream(
self,
fn: (
Callable[..., Any]
| StreamHandlerImpl
| AudioVideoStreamHandlerImpl
| VideoEventHandler
| None
) = None,
inputs: Block | Sequence[Block] | set[Block] | None = None,
outputs: Block | Sequence[Block] | set[Block] | None = None,
js: str | None = None,
concurrency_limit: int | None | Literal["default"] = "default",
concurrency_id: str | None = None,
time_limit: float | None = None,
trigger: Callable | None = None,
):
from gradio.blocks import Block
if inputs is None:
inputs = []
if outputs is None:
outputs = []
if isinstance(inputs, Block):
inputs = [inputs]
if isinstance(outputs, Block):
outputs = [outputs]
self.concurrency_limit = cast(
int, (1 if concurrency_limit in ["default", None] else concurrency_limit)
)
self.event_handler = fn # type: ignore
self.time_limit = time_limit
if (
self.mode == "send-receive"
and self.modality in ["audio", "audio-video"]
and not isinstance(self.event_handler, StreamHandlerBase)
):
raise ValueError(
"In the send-receive mode for audio, the event handler must be an instance of StreamHandlerBase."
)
if self.mode == "send-receive" or self.mode == "send":
if cast(list[Block], inputs)[0] != self:
raise ValueError(
"In the webrtc stream event, the first input component must be the WebRTC component."
)
if (
len(cast(list[Block], outputs)) != 1
and cast(list[Block], outputs)[0] != self
):
raise ValueError(
"In the webrtc stream event, the only output component must be the WebRTC component."
)
for input_component in inputs[1:]: # type: ignore
if hasattr(input_component, "change"):
input_component.change( # type: ignore
self.set_input,
inputs=inputs,
outputs=None,
concurrency_id=concurrency_id,
concurrency_limit=None,
time_limit=None,
js=js,
)
return self.tick( # type: ignore
self.set_input,
inputs=inputs,
outputs=None,
concurrency_id=concurrency_id,
concurrency_limit=None,
time_limit=None,
js=js,
)
elif self.mode == "receive":
if isinstance(inputs, list) and self in cast(list[Block], inputs):
raise ValueError(
"In the receive mode stream event, the WebRTC component cannot be an input."
)
if (
len(cast(list[Block], outputs)) != 1
and cast(list[Block], outputs)[0] != self
):
raise ValueError(
"In the receive mode stream, the only output component must be the WebRTC component."
)
if trigger is None:
raise ValueError(
"In the receive mode stream event, the trigger parameter must be provided"
)
trigger(lambda: "start_webrtc_stream", inputs=None, outputs=self)
self.tick( # type: ignore
self.set_input,
inputs=[self] + list(inputs),
outputs=None,
concurrency_id=concurrency_id,
)
@server
async def offer(self, body):
return await self.handle_offer(
body, self.set_additional_outputs(body["webrtc_id"])
)
def example_payload(self) -> Any:
return {
"video": handle_file(
"https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/world.mp4"
),
}
def example_value(self) -> Any:
return "https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/world.mp4"
def api_info(self) -> Any:
return {"type": "number"}

View File

@@ -0,0 +1,311 @@
"""Mixin for handling WebRTC connections."""
from __future__ import annotations
import json
import asyncio
import inspect
import logging
from collections import defaultdict
from collections.abc import Callable
from dataclasses import dataclass, field
from typing import (
AsyncGenerator,
Literal,
ParamSpec,
TypeVar,
cast,
)
from aiortc import (
RTCPeerConnection,
RTCSessionDescription,
)
from aiortc.contrib.media import MediaRelay # type: ignore
from fastapi.responses import JSONResponse
from fastrtc.tracks import (
AudioCallback,
HandlerType,
ServerToClientAudio,
ServerToClientVideo,
StreamHandlerBase,
StreamHandlerImpl,
VideoCallback,
VideoStreamHandler,
)
from fastrtc.utils import (
AdditionalOutputs,
Message,
create_message,
parse_json_safely,
webrtc_error_handler,
)
Track = (
VideoCallback
| VideoStreamHandler
| AudioCallback
| ServerToClientAudio
| ServerToClientVideo
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# For the return type
R = TypeVar("R")
# For the parameter specification
P = ParamSpec("P")
@dataclass
class OutputQueue:
queue: asyncio.Queue[AdditionalOutputs] = field(default_factory=asyncio.Queue)
quit: asyncio.Event = field(default_factory=asyncio.Event)
class WebRTCConnectionMixin:
def __init__(self):
self.pcs = set([])
self.relay = MediaRelay()
self.connections = defaultdict(list)
self.data_channels = {}
self.additional_outputs = defaultdict(OutputQueue)
self.handlers = {}
self.connection_timeouts = defaultdict(asyncio.Event)
# These attributes should be set by subclasses:
self.concurrency_limit: int | float | None
self.event_handler: HandlerType | None
self.time_limit: float | None
self.modality: Literal["video", "audio", "audio-video"]
self.mode: Literal["send", "receive", "send-receive"]
@staticmethod
async def wait_for_time_limit(pc: RTCPeerConnection, time_limit: float):
await asyncio.sleep(time_limit)
await pc.close()
async def connection_timeout(
self,
pc: RTCPeerConnection,
webrtc_id: str,
time_limit: float,
):
try:
await asyncio.wait_for(
self.connection_timeouts[webrtc_id].wait(), time_limit
)
except (asyncio.TimeoutError, TimeoutError):
await pc.close()
self.connection_timeouts[webrtc_id].clear()
self.clean_up(webrtc_id)
def clean_up(self, webrtc_id: str):
self.handlers.pop(webrtc_id, None)
self.connection_timeouts.pop(webrtc_id, None)
connection = self.connections.pop(webrtc_id, [])
for conn in connection:
if isinstance(conn, AudioCallback):
if inspect.iscoroutinefunction(conn.event_handler.shutdown):
asyncio.create_task(conn.event_handler.shutdown())
conn.event_handler.reset()
else:
conn.event_handler.shutdown()
conn.event_handler.reset()
output = self.additional_outputs.pop(webrtc_id, None)
if output:
logger.debug("setting quit for webrtc id %s", webrtc_id)
output.quit.set()
self.data_channels.pop(webrtc_id, None)
return connection
def set_input(self, webrtc_id: str, *args):
if webrtc_id in self.connections:
for conn in self.connections[webrtc_id]:
conn.set_args(list(args))
async def output_stream(
self, webrtc_id: str
) -> AsyncGenerator[AdditionalOutputs, None]:
outputs = self.additional_outputs[webrtc_id]
while not outputs.quit.is_set():
try:
yield await asyncio.wait_for(outputs.queue.get(), 10)
except (asyncio.TimeoutError, TimeoutError):
logger.debug("Timeout waiting for output")
async def fetch_latest_output(self, webrtc_id: str) -> AdditionalOutputs:
outputs = self.additional_outputs[webrtc_id]
return await asyncio.wait_for(outputs.queue.get(), 10)
def set_additional_outputs(
self, webrtc_id: str
) -> Callable[[AdditionalOutputs], None]:
def set_outputs(outputs: AdditionalOutputs):
self.additional_outputs[webrtc_id].queue.put_nowait(outputs)
return set_outputs
async def handle_offer(self, body, set_outputs):
logger.debug("Starting to handle offer")
logger.debug("Offer body %s", body)
if len(self.connections) >= cast(int, self.concurrency_limit):
return JSONResponse(
status_code=200,
content={
"status": "failed",
"meta": {
"error": "concurrency_limit_reached",
"limit": self.concurrency_limit,
},
},
)
offer = RTCSessionDescription(sdp=body["sdp"], type=body["type"])
pc = RTCPeerConnection()
self.pcs.add(pc)
if isinstance(self.event_handler, StreamHandlerBase):
handler = self.event_handler.copy()
handler.emit = webrtc_error_handler(handler.emit) # type: ignore
handler.receive = webrtc_error_handler(handler.receive) # type: ignore
handler.start_up = webrtc_error_handler(handler.start_up) # type: ignore
handler.shutdown = webrtc_error_handler(handler.shutdown) # type: ignore
if hasattr(handler, "video_receive"):
handler.video_receive = webrtc_error_handler(handler.video_receive) # type: ignore
if hasattr(handler, "video_emit"):
handler.video_emit = webrtc_error_handler(handler.video_emit) # type: ignore
if hasattr(handler, "on_chat_datachannel"):
handler.on_chat_datachannel = webrtc_error_handler(handler.on_chat_datachannel) # type: ignore
else:
handler = webrtc_error_handler(cast(Callable, self.event_handler))
self.handlers[body["webrtc_id"]] = handler
@pc.on("iceconnectionstatechange")
async def on_iceconnectionstatechange():
logger.debug("ICE connection state change %s", pc.iceConnectionState)
if pc.iceConnectionState == "failed":
await pc.close()
self.connections.pop(body["webrtc_id"], None)
self.pcs.discard(pc)
@pc.on("connectionstatechange")
async def _():
print("pc.connectionState %s", pc.connectionState)
logger.debug("pc.connectionState %s", pc.connectionState)
if pc.connectionState in ["failed", "closed"]:
await pc.close()
connection = self.clean_up(body["webrtc_id"])
if connection:
for conn in connection:
conn.stop()
self.pcs.discard(pc)
if pc.connectionState == "connected":
self.connection_timeouts[body["webrtc_id"]].set()
if self.time_limit is not None:
asyncio.create_task(self.wait_for_time_limit(pc, self.time_limit))
@pc.on("track")
def _(track):
relay = MediaRelay()
handler = self.handlers[body["webrtc_id"]]
if self.modality == "video" and track.kind == "video":
cb = VideoCallback(
relay.subscribe(track),
event_handler=cast(Callable, handler),
set_additional_outputs=set_outputs,
mode=cast(Literal["send", "send-receive"], self.mode),
)
elif self.modality == "audio-video" and track.kind == "video":
cb = VideoStreamHandler(
relay.subscribe(track),
event_handler=handler, # type: ignore
set_additional_outputs=set_outputs,
)
elif self.modality in ["audio", "audio-video"] and track.kind == "audio":
eh = cast(StreamHandlerImpl, handler)
eh._loop = asyncio.get_running_loop()
cb = AudioCallback(
relay.subscribe(track),
event_handler=eh,
set_additional_outputs=set_outputs,
)
else:
raise ValueError("Modality must be either video, audio, or audio-video")
if body["webrtc_id"] not in self.connections:
self.connections[body["webrtc_id"]] = []
self.connections[body["webrtc_id"]].append(cb)
if body["webrtc_id"] in self.data_channels:
for conn in self.connections[body["webrtc_id"]]:
conn.set_channel(self.data_channels[body["webrtc_id"]])
if self.mode == "send-receive":
logger.debug("Adding track to peer connection %s", cb)
pc.addTrack(cb)
elif self.mode == "send":
asyncio.create_task(cast(AudioCallback | VideoCallback, cb).start())
if self.mode == "receive":
if self.modality == "video":
cb = ServerToClientVideo(
cast(Callable, self.event_handler),
set_additional_outputs=set_outputs,
)
elif self.modality == "audio":
cb = ServerToClientAudio(
cast(Callable, self.event_handler),
set_additional_outputs=set_outputs,
)
else:
raise ValueError("Modality must be either video or audio")
logger.debug("Adding track to peer connection %s", cb)
pc.addTrack(cb)
self.connections[body["webrtc_id"]].append(cb)
cb.on("ended", lambda: self.clean_up(body["webrtc_id"]))
@pc.on("datachannel")
def _(channel):
logger.debug(f"Data channel established: {channel.label}")
self.data_channels[body["webrtc_id"]] = channel
async def set_channel(webrtc_id: str):
while not self.connections.get(webrtc_id):
await asyncio.sleep(0.05)
logger.debug("setting channel for webrtc id %s", webrtc_id)
for conn in self.connections[webrtc_id]:
conn.set_channel(channel)
asyncio.create_task(set_channel(body["webrtc_id"]))
@channel.on("message")
def _(message):
logger.debug(f"Received message: {message}")
if channel.readyState == "open":
msg_dict,error = parse_json_safely(message)
if(error is None and msg_dict['type'] in ['chat','stop_chat']):
msg_dict = cast(Message, json.loads(message))
asyncio.create_task(self.handlers[body["webrtc_id"]].on_chat_datachannel(msg_dict,channel))
else:
channel.send(
create_message("log", data=f"Server received: {message}")
)
# handle offer
await pc.setRemoteDescription(offer)
asyncio.create_task(self.connection_timeout(pc, body["webrtc_id"], 30))
# send answer
answer = await pc.createAnswer()
await pc.setLocalDescription(answer) # type: ignore
logger.debug("done handling offer about to return")
await asyncio.sleep(0.1)
return {
"sdp": pc.localDescription.sdp,
"type": pc.localDescription.type,
}

View File

@@ -0,0 +1,215 @@
import asyncio
import audioop
import base64
import logging
from typing import Any, Awaitable, Callable, Optional, cast
import anyio
import librosa
import numpy as np
from fastapi import WebSocket
from .tracks import AsyncStreamHandler, StreamHandlerImpl
from .utils import AdditionalOutputs, DataChannel, split_output
class WebSocketDataChannel(DataChannel):
def __init__(self, websocket: WebSocket, loop: asyncio.AbstractEventLoop):
self.websocket = websocket
self.loop = loop
def send(self, message: str) -> None:
asyncio.run_coroutine_threadsafe(self.websocket.send_text(message), self.loop)
logger = logging.getLogger(__file__)
def convert_to_mulaw(
audio_data: np.ndarray, original_rate: int, target_rate: int
) -> bytes:
"""Convert audio data to 8kHz mu-law format"""
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32) / 32768.0
if original_rate != target_rate:
audio_data = librosa.resample(audio_data, orig_sr=original_rate, target_sr=8000)
audio_data = (audio_data * 32768).astype(np.int16)
return audioop.lin2ulaw(audio_data, 2) # type: ignore
run_sync = anyio.to_thread.run_sync # type: ignore
class WebSocketHandler:
def __init__(
self,
stream_handler: StreamHandlerImpl,
set_handler: Callable[[str, "WebSocketHandler"], Awaitable[None]],
clean_up: Callable[[str], None],
additional_outputs_factory: Callable[
[str], Callable[[AdditionalOutputs], None]
],
):
self.stream_handler = stream_handler
self.stream_handler._clear_queue = self._clear_queue
self.websocket: Optional[WebSocket] = None
self._emit_task: Optional[asyncio.Task] = None
self.stream_id: Optional[str] = None
self.set_additional_outputs_factory = additional_outputs_factory
self.set_additional_outputs: Callable[[AdditionalOutputs], None]
self.set_handler = set_handler
self.quit = asyncio.Event()
self.clean_up = clean_up
self.queue = asyncio.Queue()
def _clear_queue(self):
old_queue = self.queue
self.queue = asyncio.Queue()
logger.debug("clearing queue")
i = 0
while not old_queue.empty():
try:
old_queue.get_nowait()
i += 1
except asyncio.QueueEmpty:
break
logger.debug("popped %d items from queue", i)
def set_args(self, args: list[Any]):
self.stream_handler.set_args(args)
async def handle_websocket(self, websocket: WebSocket):
await websocket.accept()
loop = asyncio.get_running_loop()
self.loop = loop
self.websocket = websocket
self.data_channel = WebSocketDataChannel(websocket, loop)
self.stream_handler._loop = loop
self.stream_handler.set_channel(self.data_channel)
self._emit_task = asyncio.create_task(self._emit_loop())
self._emit_to_queue_task = asyncio.create_task(self._emit_to_queue())
if isinstance(self.stream_handler, AsyncStreamHandler):
start_up = self.stream_handler.start_up()
else:
start_up = anyio.to_thread.run_sync(self.stream_handler.start_up) # type: ignore
self.start_up_task = asyncio.create_task(start_up)
try:
while not self.quit.is_set():
message = await websocket.receive_json()
if message["event"] == "media":
audio_payload = base64.b64decode(message["media"]["payload"])
audio_array = np.frombuffer(
audioop.ulaw2lin(audio_payload, 2), dtype=np.int16
)
if self.stream_handler.input_sample_rate != 8000:
audio_array = audio_array.astype(np.float32) / 32768.0
audio_array = librosa.resample(
audio_array,
orig_sr=8000,
target_sr=self.stream_handler.input_sample_rate,
)
audio_array = (audio_array * 32768).astype(np.int16)
if isinstance(self.stream_handler, AsyncStreamHandler):
await self.stream_handler.receive(
(self.stream_handler.input_sample_rate, audio_array)
)
else:
await run_sync(
self.stream_handler.receive,
(self.stream_handler.input_sample_rate, audio_array),
)
elif message["event"] == "start":
if self.stream_handler.phone_mode:
self.stream_id = cast(str, message["streamSid"])
else:
self.stream_id = cast(str, message["websocket_id"])
self.set_additional_outputs = self.set_additional_outputs_factory(
self.stream_id
)
await self.set_handler(self.stream_id, self)
elif message["event"] == "stop":
self.quit.set()
self.clean_up(cast(str, self.stream_id))
return
elif message["event"] == "ping":
await websocket.send_json({"event": "pong"})
except Exception as e:
print(e)
import traceback
traceback.print_exc()
logger.debug("Error in websocket handler %s", e)
finally:
if self._emit_task:
self._emit_task.cancel()
if self._emit_to_queue_task:
self._emit_to_queue_task.cancel()
if self.start_up_task:
self.start_up_task.cancel()
await websocket.close()
async def _emit_to_queue(self):
try:
while not self.quit.is_set():
if isinstance(self.stream_handler, AsyncStreamHandler):
output = await self.stream_handler.emit()
else:
output = await run_sync(self.stream_handler.emit)
self.queue.put_nowait(output)
except asyncio.CancelledError:
logger.debug("Emit loop cancelled")
except Exception as e:
import traceback
traceback.print_exc()
logger.debug("Error in emit loop: %s", e)
async def _emit_loop(self):
try:
while not self.quit.is_set():
output = await self.queue.get()
if output is not None:
frame, output = split_output(output)
if output is not None:
self.set_additional_outputs(output)
if not isinstance(frame, tuple):
continue
target_rate = (
self.stream_handler.output_sample_rate
if not self.stream_handler.phone_mode
else 8000
)
mulaw_audio = convert_to_mulaw(
frame[1], frame[0], target_rate=target_rate
)
audio_payload = base64.b64encode(mulaw_audio).decode("utf-8")
if self.websocket and self.stream_id:
payload = {
"event": "media",
"media": {"payload": audio_payload},
}
if self.stream_handler.phone_mode:
payload["streamSid"] = self.stream_id
await self.websocket.send_json(payload)
await asyncio.sleep(0.02)
except asyncio.CancelledError:
logger.debug("Emit loop cancelled")
except Exception as e:
import traceback
traceback.print_exc()
logger.debug("Error in emit loop: %s", e)