mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-04 17:39:23 +08:00
t :# 请为您的变更输入提交说明。以 '#' 开始的行将被忽略,而一个空的提交
This commit is contained in:
149
demo/inference.py
Normal file
149
demo/inference.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime
|
||||
from utils import draw_detections
|
||||
|
||||
|
||||
class YOLOv10:
|
||||
def __init__(self, path):
|
||||
# Initialize model
|
||||
self.initialize_model(path)
|
||||
|
||||
def __call__(self, image):
|
||||
return self.detect_objects(image)
|
||||
|
||||
def initialize_model(self, path):
|
||||
self.session = onnxruntime.InferenceSession(
|
||||
path, providers=onnxruntime.get_available_providers()
|
||||
)
|
||||
# Get model info
|
||||
self.get_input_details()
|
||||
self.get_output_details()
|
||||
|
||||
def detect_objects(self, image, conf_threshold=0.3):
|
||||
input_tensor = self.prepare_input(image)
|
||||
|
||||
# Perform inference on the image
|
||||
new_image = self.inference(image, input_tensor, conf_threshold)
|
||||
|
||||
return new_image
|
||||
|
||||
def prepare_input(self, image):
|
||||
self.img_height, self.img_width = image.shape[:2]
|
||||
|
||||
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# Resize input image
|
||||
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
|
||||
|
||||
# Scale input pixel values to 0 to 1
|
||||
input_img = input_img / 255.0
|
||||
input_img = input_img.transpose(2, 0, 1)
|
||||
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
|
||||
|
||||
return input_tensor
|
||||
|
||||
def inference(self, image, input_tensor, conf_threshold=0.3):
|
||||
start = time.perf_counter()
|
||||
outputs = self.session.run(
|
||||
self.output_names, {self.input_names[0]: input_tensor}
|
||||
)
|
||||
|
||||
print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
|
||||
(
|
||||
boxes,
|
||||
scores,
|
||||
class_ids,
|
||||
) = self.process_output(outputs, conf_threshold)
|
||||
return self.draw_detections(image, boxes, scores, class_ids)
|
||||
|
||||
def process_output(self, output, conf_threshold=0.3):
|
||||
predictions = np.squeeze(output[0])
|
||||
|
||||
# Filter out object confidence scores below threshold
|
||||
scores = predictions[:, 4]
|
||||
predictions = predictions[scores > conf_threshold, :]
|
||||
scores = scores[scores > conf_threshold]
|
||||
|
||||
if len(scores) == 0:
|
||||
return [], [], []
|
||||
|
||||
# Get the class with the highest confidence
|
||||
class_ids = np.argmax(predictions[:, 4:], axis=1)
|
||||
|
||||
# Get bounding boxes for each object
|
||||
boxes = self.extract_boxes(predictions)
|
||||
|
||||
return boxes, scores, class_ids
|
||||
|
||||
def extract_boxes(self, predictions):
|
||||
# Extract boxes from predictions
|
||||
boxes = predictions[:, :4]
|
||||
|
||||
# Scale boxes to original image dimensions
|
||||
boxes = self.rescale_boxes(boxes)
|
||||
|
||||
# Convert boxes to xyxy format
|
||||
# boxes = xywh2xyxy(boxes)
|
||||
|
||||
return boxes
|
||||
|
||||
def rescale_boxes(self, boxes):
|
||||
# Rescale boxes to original image dimensions
|
||||
input_shape = np.array(
|
||||
[self.input_width, self.input_height, self.input_width, self.input_height]
|
||||
)
|
||||
boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
||||
boxes *= np.array(
|
||||
[self.img_width, self.img_height, self.img_width, self.img_height]
|
||||
)
|
||||
return boxes
|
||||
|
||||
def draw_detections(
|
||||
self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4
|
||||
):
|
||||
return draw_detections(image, boxes, scores, class_ids, mask_alpha)
|
||||
|
||||
def get_input_details(self):
|
||||
model_inputs = self.session.get_inputs()
|
||||
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
|
||||
|
||||
self.input_shape = model_inputs[0].shape
|
||||
self.input_height = self.input_shape[2]
|
||||
self.input_width = self.input_shape[3]
|
||||
|
||||
def get_output_details(self):
|
||||
model_outputs = self.session.get_outputs()
|
||||
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import tempfile
|
||||
|
||||
import requests
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
model_file = hf_hub_download(
|
||||
repo_id="onnx-community/yolov10s", filename="onnx/model.onnx"
|
||||
)
|
||||
|
||||
yolov8_detector = YOLOv10(model_file)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
|
||||
f.write(
|
||||
requests.get(
|
||||
"https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
|
||||
).content
|
||||
)
|
||||
f.seek(0)
|
||||
img = cv2.imread(f.name)
|
||||
|
||||
# # Detect Objects
|
||||
combined_image = yolov8_detector.detect_objects(img)
|
||||
|
||||
# Draw detections
|
||||
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
|
||||
cv2.imshow("Output", combined_image)
|
||||
cv2.waitKey(0)
|
||||
Reference in New Issue
Block a user