From 7b71eda153291536396fc5892df0f2c61eaa538b Mon Sep 17 00:00:00 2001 From: bingochaos <523834173@qq.com> Date: Mon, 17 Feb 2025 10:41:16 +0800 Subject: [PATCH] Update README.md (#2) * Update README.md --- README.md | 20 ++++-- README_en.md | 182 +++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 196 insertions(+), 6 deletions(-) create mode 100644 README_en.md diff --git a/README.md b/README.md index bcd2397..f263bea 100644 --- a/README.md +++ b/README.md @@ -5,15 +5,17 @@ Static Badge Static Badge +
+中文|English +
-

-Stream video and audio in real time with Gradio using WebRTC. +本仓库是从原有的 gradio_webrtc 仓库 fork 而来,主要增加了`video_chat`作为允许的入参,并默认开启,这个模式和原有的`modality="audio-video"`且`mode="send-receive"`的行为保持一致,但重写了 UI 部分,增加了更多的交互能力(更多的麦克风操作,同时展示本地视频信息),其视觉表现如下图。 + +如果手动将`video_chat`参数设置为`False`,则其用法与原仓库保持一致 https://freddyaboulton.github.io/gradio-webrtc/ ![picture-in-picture](docs/image.png) ![side-by-side](docs/image2.png) -

- ## Installation ```bash @@ -31,6 +33,8 @@ https://freddyaboulton.github.io/gradio-webrtc/ ## Examples +使用时需要一个 handler 作为组件的入参,并实现类似以下代码: + ```python import asyncio import base64 @@ -84,18 +88,22 @@ class VideoChatHandler(AsyncAudioVideoStreamHandler): output_frame_size=self.output_frame_size, ) + #处理客户端上传的视频数据 async def video_receive(self, frame: np.ndarray): newFrame = np.array(frame) newFrame[0:, :, 0] = 255 - newFrame[0:, :, 0] self.video_queue.put_nowait(newFrame) + #准备服务端下发的视频数据 async def video_emit(self) -> VideoEmitType: return await self.video_queue.get() + #处理客户端上传的音频数据 async def receive(self, frame: tuple[int, np.ndarray]) -> None: frame_size, array = frame self.audio_queue.put_nowait(array) + #准备服务端下发的音频数据 async def emit(self) -> AudioEmitType: if not self.args_set.is_set(): await self.wait_for_args() @@ -140,8 +148,8 @@ if __name__ == "__main__": ## Deployment -When deploying in a cloud environment (like Hugging Face Spaces, EC2, etc), you need to set up a TURN server to relay the WebRTC traffic. -The easiest way to do this is to use a service like Twilio. +在云环境中部署(例如 huggingface,EC2 等)时,您需要设置转向服务器以中继 WEBRTC 流量。 +最简单的方法是使用 Twilio 之类的服务。国内部署需要寻找适合的替代方案。 ```python from twilio.rest import Client diff --git a/README_en.md b/README_en.md new file mode 100644 index 0000000..121b7ed --- /dev/null +++ b/README_en.md @@ -0,0 +1,182 @@ +

Gradio WebRTC ⚡️

+ +
+Static Badge +Static Badge +Static Badge +
+
+中文|English +
+This repository is forked from the original gradio_webrtc repository, primarily adding `video_chat` as an allowed parameter to be enabled by default. This mode is consistent with the behavior of the original `modality="audio-video"` and `mode="send-receive"`, but the UI has been rewritten to include more interactive capabilities (more microphone controls, and the ability to display local video information). The visual presentation is shown below. + +If `video_chat` is manually set to `False`, its usage is consistent with the original repository https://freddyaboulton.github.io/gradio-webrtc/ + +![picture-in-picture](docs/image.png) +![side-by-side](docs/image2.png) + +## Installation + +```bash +gradio cc install +gradio cc build --no-generate-docs +``` + +```bash +pip install dist/gradio_webrtc-0.0.30.dev0-py3-none-any.whl +``` + +## Docs + +https://freddyaboulton.github.io/gradio-webrtc/ + +## Examples + +When using it, you need a handler as the entry parameter of the component and implement code similar to the following: + +```python +import asyncio +import base64 +from io import BytesIO + +import gradio as gr +import numpy as np +from gradio_webrtc import ( + AsyncAudioVideoStreamHandler, + WebRTC, + VideoEmitType, + AudioEmitType, +) +from PIL import Image + + +def encode_audio(data: np.ndarray) -> dict: + """Encode Audio data to send to the server""" + return {"mime_type": "audio/pcm", "data": base64.b64encode(data.tobytes()).decode("UTF-8")} + + +def encode_image(data: np.ndarray) -> dict: + with BytesIO() as output_bytes: + pil_image = Image.fromarray(data) + pil_image.save(output_bytes, "JPEG") + bytes_data = output_bytes.getvalue() + base64_str = str(base64.b64encode(bytes_data), "utf-8") + return {"mime_type": "image/jpeg", "data": base64_str} + + +class VideoChatHandler(AsyncAudioVideoStreamHandler): + def __init__( + self, expected_layout="mono", output_sample_rate=24000, output_frame_size=480 + ) -> None: + super().__init__( + expected_layout, + output_sample_rate, + output_frame_size, + input_sample_rate=24000, + ) + self.audio_queue = asyncio.Queue() + self.video_queue = asyncio.Queue() + self.quit = asyncio.Event() + self.session = None + self.last_frame_time = 0 + + def copy(self) -> "VideoChatHandler": + return VideoChatHandler( + expected_layout=self.expected_layout, + output_sample_rate=self.output_sample_rate, + output_frame_size=self.output_frame_size, + ) + + #Process video data uploaded by the client + async def video_receive(self, frame: np.ndarray): + newFrame = np.array(frame) + newFrame[0:, :, 0] = 255 - newFrame[0:, :, 0] + self.video_queue.put_nowait(newFrame) + + #Prepare the video data sent by the server + async def video_emit(self) -> VideoEmitType: + return await self.video_queue.get() + + #Process audio data uploaded by the client + async def receive(self, frame: tuple[int, np.ndarray]) -> None: + frame_size, array = frame + self.audio_queue.put_nowait(array) + + #Prepare the audio data sent by the server + async def emit(self) -> AudioEmitType: + if not self.args_set.is_set(): + await self.wait_for_args() + array = await self.audio_queue.get() + return (self.output_sample_rate, array) + + def shutdown(self) -> None: + self.quit.set() + self.connection = None + self.args_set.clear() + self.quit.clear() + + + +css = """ +footer { + display: none !important; +} +""" + +with gr.Blocks(css=css) as demo: + webrtc = WebRTC( + label="Video Chat", + modality="audio-video", + mode="send-receive", + video_chat=True, + elem_id="video-source", + ) + webrtc.stream( + VideoChatHandler(), + inputs=[webrtc], + outputs=[webrtc], + time_limit=150, + concurrency_limit=2, + ) + + +if __name__ == "__main__": + demo.launch() + +``` + +## Deployment + +When deploying in a cloud environment (like Hugging Face Spaces, EC2, etc), you need to set up a TURN server to relay the WebRTC traffic. +The easiest way to do this is to use a service like Twilio. + +```python +from twilio.rest import Client +import os + +account_sid = os.environ.get("TWILIO_ACCOUNT_SID") +auth_token = os.environ.get("TWILIO_AUTH_TOKEN") + +client = Client(account_sid, auth_token) + +token = client.tokens.create() + +rtc_configuration = { + "iceServers": token.ice_servers, + "iceTransportPolicy": "relay", +} + +with gr.Blocks() as demo: + ... + rtc = WebRTC(rtc_configuration=rtc_configuration, ...) + ... +``` + +## Contributors + +[csxh47](https://github.com/xhup) +[bingochaos](https://github.com/bingochaos) +[sudowind](https://github.com/sudowind) +[emililykimura](https://github.com/emililykimura) +[Tony](https://github.com/raidios) +[Cheng Gang](https://github.com/lovepope)