Files
MuseTalk/train_codes/train.py

665 lines
26 KiB
Python
Executable File

import argparse
import itertools
import math
import os
import random
from pathlib import Path
import json
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from PIL import Image, ImageDraw
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
import sys
sys.path.append("./")
from DataLoader import Dataset
from utils.utils import preprocess_img_tensor
from torch.utils import data as data_utils
from utils.model_utils import validation,PositionalEncoding
import time
import pandas as pd
from PIL import Image
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0.dev0")
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--unet_config_file",
type=str,
default=None,
required=True,
help="the configuration of unet file.",
)
parser.add_argument(
"--reconstruction",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--data_root",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--testing_speed", action="store_true", help="Whether to caculate the running time")
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=1000,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint and are suitable for resuming training"
" using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--validation_steps",
type=int,
default=1000,
help=(
"Conduct validation every X updates."
),
)
parser.add_argument(
"--val_out_dir",
type=str,
default = '',
help=(
"Conduct validation every X updates."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more docs"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--use_audio_length_left",
type=int,
default=1,
help="number of audio length (left).",
)
parser.add_argument(
"--use_audio_length_right",
type=int,
default=1,
help="number of audio length (right)",
)
parser.add_argument(
"--whisper_model_type",
type=str,
default="landmark_nearest",
choices=["tiny","largeV2"],
help="Determine whisper feature type",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def print_model_dtypes(model, model_name):
for name, param in model.named_parameters():
if(param.dtype!=torch.float32):
print(f"{name}: {param.dtype}")
def main():
args = parse_args()
args.output_dir = f"output/{args.output_dir}"
args.val_out_dir = f"val/{args.val_out_dir}"
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.val_out_dir, exist_ok=True)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
logging_dir = Path(args.output_dir, args.logging_dir)
project_config = ProjectConfiguration(
total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir
)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
project_config=project_config,
)
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
)
if args.seed is not None:
# set_seed(args.seed)
set_seed(seed + accelerator.process_index)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
# Load models and create wrapper for stable diffusion
with open(args.unet_config_file, 'r') as f:
unet_config = json.load(f)
#text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
# Todo:
print("Loading AutoencoderKL")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
vae_fp32 = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
print("Loading UNet2DConditionModel")
unet = UNet2DConditionModel(**unet_config)
if args.whisper_model_type == "tiny":
pe = PositionalEncoding(d_model=384)
elif args.whisper_model_type == "largeV2":
pe = PositionalEncoding(d_model=1280)
else:
print(f"not support whisper_model_type {args.whisper_model_type}")
print("Loading models done...")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = (
itertools.chain(unet.parameters()))
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
print("loading train_dataset ...")
train_dataset = Dataset(args.data_root,
'train',
use_audio_length_left=args.use_audio_length_left,
use_audio_length_right=args.use_audio_length_right,
whisper_model_type=args.whisper_model_type
)
train_data_loader = data_utils.DataLoader(
train_dataset, batch_size=args.train_batch_size, shuffle=True,
num_workers=8)
print("loading val_dataset ...")
val_dataset = Dataset(args.data_root,
'val',
use_audio_length_left=args.use_audio_length_left,
use_audio_length_right=args.use_audio_length_right,
whisper_model_type=args.whisper_model_type
)
val_data_loader = data_utils.DataLoader(
val_dataset, batch_size=1, shuffle=False,
num_workers=8)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_data_loader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
)
unet, optimizer, train_data_loader, val_data_loader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_data_loader, val_data_loader,lr_scheduler
)
vae.requires_grad_(False)
vae_fp32.requires_grad_(False)
weight_dtype = torch.float32
# weight_dtype = torch.float16
vae_fp32.to(accelerator.device, dtype=weight_dtype)
vae_fp32.encoder = None
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device, dtype=weight_dtype)
vae.decoder = None
pe.to(accelerator.device, dtype=weight_dtype)
num_update_steps_per_epoch = math.ceil(len(train_data_loader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print(f" Num batches each epoch = {len(train_data_loader)}")
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_data_loader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
# path="../models/pytorch_model.bin"
#TODO change path
# path=None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
print(f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run.")
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
# caluate the elapsed time
elapsed_time = []
start = time.time()
for epoch in range(first_epoch, args.num_train_epochs):
unet.train()
for step, (ref_image, image, masked_image, masks, audio_feature) in enumerate(train_data_loader):
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
dataloader_time = time.time() - start
start = time.time()
masks = masks.unsqueeze(1).unsqueeze(1).to(vae.device)
# """
# print("=============epoch:{0}=step:{1}=====".format(epoch,step))
# print("ref_image: ",ref_image.shape)
# print("masks: ", masks.shape)
# print("masked_image: ", masked_image.shape)
# print("audio feature: ", audio_feature.shape)
# print("image: ", image.shape)
# """
ref_image = preprocess_img_tensor(ref_image).to(vae.device)
image = preprocess_img_tensor(image).to(vae.device)
masked_image = preprocess_img_tensor(masked_image).to(vae.device)
img_process_time = time.time() - start
start = time.time()
with accelerator.accumulate(unet):
vae = vae.half()
# Convert images to latent space
latents = vae.encode(image.to(dtype=weight_dtype)).latent_dist.sample() # init image
latents = latents * vae.config.scaling_factor
# Convert masked images to latent space
masked_latents = vae.encode(
masked_image.reshape(image.shape).to(dtype=weight_dtype) # masked image
).latent_dist.sample()
masked_latents = masked_latents * vae.config.scaling_factor
# Convert ref images to latent space
ref_latents = vae.encode(
ref_image.reshape(image.shape).to(dtype=weight_dtype) # ref image
).latent_dist.sample()
ref_latents = ref_latents * vae.config.scaling_factor
vae_time = time.time() - start
start = time.time()
mask = torch.stack(
[
torch.nn.functional.interpolate(mask, size=(mask.shape[-1] // 8, mask.shape[-1] // 8))
for mask in masks
]
)
mask = mask.reshape(-1, 1, mask.shape[-1], mask.shape[-1])
bsz = latents.shape[0]
# fix timestep for each image
timesteps = torch.tensor([0], device=latents.device)
# concatenate the latents with the mask and the masked latents
"""
print("=============vae latents=====".format(epoch,step))
print("ref_latents: ",ref_latents.shape)
print("mask: ", mask.shape)
print("masked_latents: ", masked_latents.shape)
"""
if unet_config['in_channels'] == 9:
latent_model_input = torch.cat([mask, masked_latents, ref_latents], dim=1)
else:
latent_model_input = torch.cat([masked_latents, ref_latents], dim=1)
audio_feature = audio_feature.to(dtype=weight_dtype)
# Predict the noise residual
image_pred = unet(latent_model_input, timesteps, encoder_hidden_states = audio_feature).sample
if args.reconstruction: # decode the image from the predicted latents
image_pred_img = (1 / vae_fp32.config.scaling_factor) * image_pred
image_pred_img = vae_fp32.decode(image_pred_img).sample
# Mask the top half of the image and calculate the loss only for the lower half of the image.
image_pred_img = image_pred_img[:, :, image_pred_img.shape[2]//2:, :]
image = image[:, :, image.shape[2]//2:, :]
loss_lip = F.l1_loss(image_pred_img.float(), image.float(), reduction="mean") # the loss of the decoded images
loss_latents = F.l1_loss(image_pred.float(), latents.float(), reduction="mean") # the loss of the latents
loss = 2.0*loss_lip + loss_latents # add some weight to balance the loss
else:
loss = F.mse_loss(image_pred.float(), latents.float(), reduction="mean")
#
unet_elapsed_time = time.time() - start
start = time.time()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(unet.parameters())
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
backward_elapsed_time = time.time() - start
start = time.time()
if args.testing_speed is True and accelerator.is_main_process:
elapsed_time.append(
[dataloader_time, unet_elapsed_time, vae_time, backward_elapsed_time,img_process_time]
)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if global_step % args.validation_steps == 0:
if accelerator.is_main_process:
logger.info(
f"Running validation... epoch={epoch}, global_step={global_step}"
)
print("===========start validation==========")
# Use the helper function to check the data types for each model
vae_new = vae.float()
print_model_dtypes(accelerator.unwrap_model(vae_new), "VAE")
print_model_dtypes(accelerator.unwrap_model(vae_fp32), "VAE_FP32")
print_model_dtypes(accelerator.unwrap_model(unet), "UNET")
print(f"weight_dtype: {weight_dtype}")
print(f"epoch type: {type(epoch)}")
print(f"global_step type: {type(global_step)}")
validation(
# vae=accelerator.unwrap_model(vae),
vae=accelerator.unwrap_model(vae_new),
vae_fp32=accelerator.unwrap_model(vae_fp32),
unet=accelerator.unwrap_model(unet),
unet_config=unet_config,
# weight_dtype=weight_dtype,
weight_dtype=torch.float32,
epoch=epoch,
global_step=global_step,
val_data_loader=val_data_loader,
output_dir = args.val_out_dir,
whisper_model_type = args.whisper_model_type
)
logger.info(f"Saved samples to images/val")
start = time.time()
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0],
"unet": unet_elapsed_time,
"backward": backward_elapsed_time,
"data": dataloader_time,
"img_process":img_process_time,
"vae":vae_time
}
progress_bar.set_postfix(**logs)
# accelerator.log(logs, step=global_step)
accelerator.log(
{
"loss/step_loss": logs["loss"],
"parameter/lr": logs["lr"],
"time/unet_forward_time": unet_elapsed_time,
"time/unet_backward_time": backward_elapsed_time,
"time/data_time": dataloader_time,
"time/img_process_time":img_process_time,
"time/vae_time": vae_time
},
step=global_step,
)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
main()