mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-05 01:49:20 +08:00
667 lines
26 KiB
Python
Executable File
667 lines
26 KiB
Python
Executable File
import argparse
|
|
import itertools
|
|
import math
|
|
import os
|
|
import random
|
|
from pathlib import Path
|
|
import json
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import ProjectConfiguration, set_seed
|
|
from PIL import Image, ImageDraw
|
|
from torch.utils.data import Dataset
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDPMScheduler,
|
|
StableDiffusionInpaintPipeline,
|
|
StableDiffusionPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.utils import check_min_version
|
|
|
|
import sys
|
|
sys.path.append("./")
|
|
|
|
from DataLoader import Dataset
|
|
from utils.utils import preprocess_img_tensor
|
|
from torch.utils import data as data_utils
|
|
from utils.model_utils import validation,PositionalEncoding
|
|
import time
|
|
import pandas as pd
|
|
from PIL import Image
|
|
|
|
|
|
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
|
check_min_version("0.13.0.dev0")
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
parser.add_argument(
|
|
"--unet_config_file",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="the configuration of unet file.",
|
|
)
|
|
parser.add_argument(
|
|
"--reconstruction",
|
|
default=False,
|
|
action="store_true",
|
|
help="Flag to add prior preservation loss.",
|
|
)
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--data_root",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="A folder containing the training data of instance images.",
|
|
)
|
|
|
|
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="text-inversion-model",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
|
parser.add_argument("--testing_speed", action="store_true", help="Whether to caculate the running time")
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=1)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_checkpointing",
|
|
action="store_true",
|
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=5e-6,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=False,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument(
|
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
|
)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument("--train_json", type=str, default="train.json", help="The json file containing train image folders")
|
|
parser.add_argument("--val_json", type=str, default="test.json", help="The json file containing validation image folders")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default="no",
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose"
|
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
|
"and an Nvidia Ampere GPU."
|
|
),
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=1000,
|
|
help=(
|
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
|
" checkpoints in case they are better than the last checkpoint and are suitable for resuming training"
|
|
" using `--resume_from_checkpoint`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--validation_steps",
|
|
type=int,
|
|
default=1000,
|
|
help=(
|
|
"Conduct validation every X updates."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--val_out_dir",
|
|
type=str,
|
|
default = '',
|
|
help=(
|
|
"Conduct validation every X updates."
|
|
),
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--checkpoints_total_limit",
|
|
type=int,
|
|
default=None,
|
|
help=(
|
|
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
|
|
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
|
|
" for more docs"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--use_audio_length_left",
|
|
type=int,
|
|
default=1,
|
|
help="number of audio length (left).",
|
|
)
|
|
parser.add_argument(
|
|
"--use_audio_length_right",
|
|
type=int,
|
|
default=1,
|
|
help="number of audio length (right)",
|
|
)
|
|
parser.add_argument(
|
|
"--whisper_model_type",
|
|
type=str,
|
|
default="landmark_nearest",
|
|
choices=["tiny","largeV2"],
|
|
help="Determine whisper feature type",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
return args
|
|
|
|
def print_model_dtypes(model, model_name):
|
|
for name, param in model.named_parameters():
|
|
if(param.dtype!=torch.float32):
|
|
print(f"{name}: {param.dtype}")
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
args.output_dir = f"output/{args.output_dir}"
|
|
args.val_out_dir = f"val/{args.val_out_dir}"
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
os.makedirs(args.val_out_dir, exist_ok=True)
|
|
|
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
|
|
|
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir)
|
|
|
|
project_config = ProjectConfiguration(
|
|
total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir
|
|
)
|
|
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
mixed_precision=args.mixed_precision,
|
|
log_with="tensorboard",
|
|
project_config=project_config,
|
|
)
|
|
|
|
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
|
|
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
|
|
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
|
|
if args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
|
|
raise ValueError(
|
|
"Gradient accumulation is not supported when training the text encoder in distributed training. "
|
|
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
|
|
)
|
|
|
|
if args.seed is not None:
|
|
# set_seed(args.seed)
|
|
set_seed(seed + accelerator.process_index)
|
|
|
|
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
|
).repo_id
|
|
|
|
|
|
# Load models and create wrapper for stable diffusion
|
|
with open(args.unet_config_file, 'r') as f:
|
|
unet_config = json.load(f)
|
|
|
|
#text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
|
|
|
|
# Todo:
|
|
print("Loading AutoencoderKL")
|
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
|
|
vae_fp32 = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
|
|
print("Loading UNet2DConditionModel")
|
|
unet = UNet2DConditionModel(**unet_config)
|
|
|
|
if args.whisper_model_type == "tiny":
|
|
pe = PositionalEncoding(d_model=384)
|
|
elif args.whisper_model_type == "largeV2":
|
|
pe = PositionalEncoding(d_model=1280)
|
|
else:
|
|
print(f"not support whisper_model_type {args.whisper_model_type}")
|
|
|
|
print("Loading models done...")
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
|
|
if args.scale_lr:
|
|
args.learning_rate = (
|
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
|
)
|
|
|
|
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
|
if args.use_8bit_adam:
|
|
try:
|
|
import bitsandbytes as bnb
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
|
)
|
|
|
|
optimizer_class = bnb.optim.AdamW8bit
|
|
else:
|
|
optimizer_class = torch.optim.AdamW
|
|
|
|
params_to_optimize = (
|
|
itertools.chain(unet.parameters()))
|
|
optimizer = optimizer_class(
|
|
params_to_optimize,
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
print("loading train_dataset ...")
|
|
train_dataset = Dataset(args.data_root,
|
|
args.train_json,
|
|
use_audio_length_left=args.use_audio_length_left,
|
|
use_audio_length_right=args.use_audio_length_right,
|
|
whisper_model_type=args.whisper_model_type
|
|
)
|
|
train_data_loader = data_utils.DataLoader(
|
|
train_dataset, batch_size=args.train_batch_size, shuffle=True,
|
|
num_workers=8)
|
|
print("loading val_dataset ...")
|
|
val_dataset = Dataset(args.data_root,
|
|
args.val_json,
|
|
use_audio_length_left=args.use_audio_length_left,
|
|
use_audio_length_right=args.use_audio_length_right,
|
|
whisper_model_type=args.whisper_model_type
|
|
)
|
|
val_data_loader = data_utils.DataLoader(
|
|
val_dataset, batch_size=1, shuffle=False,
|
|
num_workers=8)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
overrode_max_train_steps = False
|
|
num_update_steps_per_epoch = math.ceil(len(train_data_loader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
overrode_max_train_steps = True
|
|
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
|
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
|
)
|
|
|
|
|
|
|
|
unet, optimizer, train_data_loader, val_data_loader, lr_scheduler = accelerator.prepare(
|
|
unet, optimizer, train_data_loader, val_data_loader,lr_scheduler
|
|
)
|
|
|
|
vae.requires_grad_(False)
|
|
vae_fp32.requires_grad_(False)
|
|
|
|
weight_dtype = torch.float32
|
|
# weight_dtype = torch.float16
|
|
vae_fp32.to(accelerator.device, dtype=weight_dtype)
|
|
vae_fp32.encoder = None
|
|
if accelerator.mixed_precision == "fp16":
|
|
weight_dtype = torch.float16
|
|
elif accelerator.mixed_precision == "bf16":
|
|
weight_dtype = torch.bfloat16
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
vae.decoder = None
|
|
pe.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_data_loader) / args.gradient_accumulation_steps)
|
|
if overrode_max_train_steps:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
# Afterwards we recalculate our number of training epochs
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if accelerator.is_main_process:
|
|
accelerator.init_trackers("dreambooth", config=vars(args))
|
|
|
|
# Train!
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
print(f" Num batches each epoch = {len(train_data_loader)}")
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num batches each epoch = {len(train_data_loader)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
global_step = 0
|
|
first_epoch = 0
|
|
|
|
if args.resume_from_checkpoint:
|
|
if args.resume_from_checkpoint != "latest":
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the most recent checkpoint
|
|
dirs = os.listdir(args.output_dir)
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
|
path = dirs[-1] if len(dirs) > 0 else None
|
|
|
|
# path="../models/pytorch_model.bin"
|
|
#TODO change path
|
|
# path=None
|
|
if path is None:
|
|
accelerator.print(
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
|
)
|
|
args.resume_from_checkpoint = None
|
|
print(f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run.")
|
|
else:
|
|
accelerator.print(f"Resuming from checkpoint {path}")
|
|
accelerator.load_state(os.path.join(args.output_dir, path))
|
|
|
|
global_step = int(path.split("-")[1])
|
|
|
|
resume_global_step = global_step * args.gradient_accumulation_steps
|
|
first_epoch = global_step // num_update_steps_per_epoch
|
|
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
|
|
|
|
|
|
|
# Only show the progress bar once on each machine.
|
|
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
|
progress_bar.set_description("Steps")
|
|
|
|
# caluate the elapsed time
|
|
elapsed_time = []
|
|
start = time.time()
|
|
|
|
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs):
|
|
unet.train()
|
|
for step, (ref_image, image, masked_image, masks, audio_feature) in enumerate(train_data_loader):
|
|
# Skip steps until we reach the resumed step
|
|
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
|
if step % args.gradient_accumulation_steps == 0:
|
|
progress_bar.update(1)
|
|
continue
|
|
dataloader_time = time.time() - start
|
|
start = time.time()
|
|
masks = masks.unsqueeze(1).unsqueeze(1).to(vae.device)
|
|
# """
|
|
# print("=============epoch:{0}=step:{1}=====".format(epoch,step))
|
|
# print("ref_image: ",ref_image.shape)
|
|
# print("masks: ", masks.shape)
|
|
# print("masked_image: ", masked_image.shape)
|
|
# print("audio feature: ", audio_feature.shape)
|
|
# print("image: ", image.shape)
|
|
# """
|
|
ref_image = preprocess_img_tensor(ref_image).to(vae.device)
|
|
image = preprocess_img_tensor(image).to(vae.device)
|
|
masked_image = preprocess_img_tensor(masked_image).to(vae.device)
|
|
|
|
img_process_time = time.time() - start
|
|
start = time.time()
|
|
with accelerator.accumulate(unet):
|
|
vae = vae.half()
|
|
# Convert images to latent space
|
|
latents = vae.encode(image.to(dtype=weight_dtype)).latent_dist.sample() # init image
|
|
latents = latents * vae.config.scaling_factor
|
|
|
|
# Convert masked images to latent space
|
|
masked_latents = vae.encode(
|
|
masked_image.reshape(image.shape).to(dtype=weight_dtype) # masked image
|
|
).latent_dist.sample()
|
|
masked_latents = masked_latents * vae.config.scaling_factor
|
|
|
|
# Convert ref images to latent space
|
|
ref_latents = vae.encode(
|
|
ref_image.reshape(image.shape).to(dtype=weight_dtype) # ref image
|
|
).latent_dist.sample()
|
|
ref_latents = ref_latents * vae.config.scaling_factor
|
|
|
|
vae_time = time.time() - start
|
|
start = time.time()
|
|
|
|
mask = torch.stack(
|
|
[
|
|
torch.nn.functional.interpolate(mask, size=(mask.shape[-1] // 8, mask.shape[-1] // 8))
|
|
for mask in masks
|
|
]
|
|
)
|
|
mask = mask.reshape(-1, 1, mask.shape[-1], mask.shape[-1])
|
|
|
|
|
|
bsz = latents.shape[0]
|
|
# fix timestep for each image
|
|
timesteps = torch.tensor([0], device=latents.device)
|
|
# concatenate the latents with the mask and the masked latents
|
|
"""
|
|
print("=============vae latents=====".format(epoch,step))
|
|
print("ref_latents: ",ref_latents.shape)
|
|
print("mask: ", mask.shape)
|
|
print("masked_latents: ", masked_latents.shape)
|
|
"""
|
|
|
|
if unet_config['in_channels'] == 9:
|
|
latent_model_input = torch.cat([mask, masked_latents, ref_latents], dim=1)
|
|
else:
|
|
latent_model_input = torch.cat([masked_latents, ref_latents], dim=1)
|
|
|
|
audio_feature = audio_feature.to(dtype=weight_dtype)
|
|
# Predict the noise residual
|
|
image_pred = unet(latent_model_input, timesteps, encoder_hidden_states = audio_feature).sample
|
|
|
|
if args.reconstruction: # decode the image from the predicted latents
|
|
image_pred_img = (1 / vae_fp32.config.scaling_factor) * image_pred
|
|
image_pred_img = vae_fp32.decode(image_pred_img).sample
|
|
|
|
# Mask the top half of the image and calculate the loss only for the lower half of the image.
|
|
image_pred_img = image_pred_img[:, :, image_pred_img.shape[2]//2:, :]
|
|
image = image[:, :, image.shape[2]//2:, :]
|
|
loss_lip = F.l1_loss(image_pred_img.float(), image.float(), reduction="mean") # the loss of the decoded images
|
|
loss_latents = F.l1_loss(image_pred.float(), latents.float(), reduction="mean") # the loss of the latents
|
|
|
|
loss = 2.0*loss_lip + loss_latents # add some weight to balance the loss
|
|
|
|
else:
|
|
loss = F.mse_loss(image_pred.float(), latents.float(), reduction="mean")
|
|
#
|
|
|
|
unet_elapsed_time = time.time() - start
|
|
start = time.time()
|
|
|
|
accelerator.backward(loss)
|
|
if accelerator.sync_gradients:
|
|
params_to_clip = (
|
|
itertools.chain(unet.parameters())
|
|
)
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
backward_elapsed_time = time.time() - start
|
|
start = time.time()
|
|
|
|
if args.testing_speed is True and accelerator.is_main_process:
|
|
elapsed_time.append(
|
|
[dataloader_time, unet_elapsed_time, vae_time, backward_elapsed_time,img_process_time]
|
|
)
|
|
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
if global_step % args.checkpointing_steps == 0:
|
|
if accelerator.is_main_process:
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
|
accelerator.save_state(save_path)
|
|
logger.info(f"Saved state to {save_path}")
|
|
|
|
|
|
if global_step % args.validation_steps == 0:
|
|
if accelerator.is_main_process:
|
|
logger.info(
|
|
f"Running validation... epoch={epoch}, global_step={global_step}"
|
|
)
|
|
print("===========start validation==========")
|
|
# Use the helper function to check the data types for each model
|
|
vae_new = vae.float()
|
|
print_model_dtypes(accelerator.unwrap_model(vae_new), "VAE")
|
|
print_model_dtypes(accelerator.unwrap_model(vae_fp32), "VAE_FP32")
|
|
print_model_dtypes(accelerator.unwrap_model(unet), "UNET")
|
|
|
|
print(f"weight_dtype: {weight_dtype}")
|
|
print(f"epoch type: {type(epoch)}")
|
|
print(f"global_step type: {type(global_step)}")
|
|
validation(
|
|
# vae=accelerator.unwrap_model(vae),
|
|
vae=accelerator.unwrap_model(vae_new),
|
|
vae_fp32=accelerator.unwrap_model(vae_fp32),
|
|
unet=accelerator.unwrap_model(unet),
|
|
unet_config=unet_config,
|
|
# weight_dtype=weight_dtype,
|
|
weight_dtype=torch.float32,
|
|
epoch=epoch,
|
|
global_step=global_step,
|
|
val_data_loader=val_data_loader,
|
|
output_dir = args.val_out_dir,
|
|
whisper_model_type = args.whisper_model_type
|
|
)
|
|
logger.info(f"Saved samples to images/val")
|
|
start = time.time()
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0],
|
|
"unet": unet_elapsed_time,
|
|
"backward": backward_elapsed_time,
|
|
"data": dataloader_time,
|
|
"img_process":img_process_time,
|
|
"vae":vae_time
|
|
}
|
|
progress_bar.set_postfix(**logs)
|
|
# accelerator.log(logs, step=global_step)
|
|
|
|
accelerator.log(
|
|
{
|
|
"loss/step_loss": logs["loss"],
|
|
"parameter/lr": logs["lr"],
|
|
"time/unet_forward_time": unet_elapsed_time,
|
|
"time/unet_backward_time": backward_elapsed_time,
|
|
"time/data_time": dataloader_time,
|
|
"time/img_process_time":img_process_time,
|
|
"time/vae_time": vae_time
|
|
},
|
|
step=global_step,
|
|
)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
accelerator.wait_for_everyone()
|
|
accelerator.end_training()
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|