mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-04 17:39:20 +08:00
* docs: update readme * docs: update readme * feat: training codes * feat: data preprocess * docs: release training
168 lines
5.3 KiB
Python
Executable File
168 lines
5.3 KiB
Python
Executable File
import librosa
|
|
import librosa.filters
|
|
import numpy as np
|
|
from scipy import signal
|
|
from scipy.io import wavfile
|
|
|
|
class HParams:
|
|
# copy from wav2lip
|
|
def __init__(self):
|
|
self.n_fft = 800
|
|
self.hop_size = 200
|
|
self.win_size = 800
|
|
self.sample_rate = 16000
|
|
self.frame_shift_ms = None
|
|
self.signal_normalization = True
|
|
|
|
self.allow_clipping_in_normalization = True
|
|
self.symmetric_mels = True
|
|
self.max_abs_value = 4.0
|
|
self.preemphasize = True
|
|
self.preemphasis = 0.97
|
|
self.min_level_db = -100
|
|
self.ref_level_db = 20
|
|
self.fmin = 55
|
|
self.fmax=7600
|
|
|
|
self.use_lws=False
|
|
self.num_mels=80 # Number of mel-spectrogram channels and local conditioning dimensionality
|
|
self.rescale=True # Whether to rescale audio prior to preprocessing
|
|
self.rescaling_max=0.9 # Rescaling value
|
|
self.use_lws=False
|
|
|
|
|
|
hp = HParams()
|
|
|
|
def load_wav(path, sr):
|
|
return librosa.core.load(path, sr=sr)[0]
|
|
#def load_wav(path, sr):
|
|
# audio, sr_native = sf.read(path)
|
|
# if sr != sr_native:
|
|
# audio = librosa.resample(audio.T, sr_native, sr).T
|
|
# return audio
|
|
|
|
def save_wav(wav, path, sr):
|
|
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
|
#proposed by @dsmiller
|
|
wavfile.write(path, sr, wav.astype(np.int16))
|
|
|
|
def save_wavenet_wav(wav, path, sr):
|
|
librosa.output.write_wav(path, wav, sr=sr)
|
|
|
|
def preemphasis(wav, k, preemphasize=True):
|
|
if preemphasize:
|
|
return signal.lfilter([1, -k], [1], wav)
|
|
return wav
|
|
|
|
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
|
if inv_preemphasize:
|
|
return signal.lfilter([1], [1, -k], wav)
|
|
return wav
|
|
|
|
def get_hop_size():
|
|
hop_size = hp.hop_size
|
|
if hop_size is None:
|
|
assert hp.frame_shift_ms is not None
|
|
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
|
|
return hop_size
|
|
|
|
def linearspectrogram(wav):
|
|
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
|
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
|
|
|
if hp.signal_normalization:
|
|
return _normalize(S)
|
|
return S
|
|
|
|
def melspectrogram(wav):
|
|
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
|
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
|
|
|
if hp.signal_normalization:
|
|
return _normalize(S)
|
|
return S
|
|
|
|
def _lws_processor():
|
|
import lws
|
|
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
|
|
|
|
def _stft(y):
|
|
if hp.use_lws:
|
|
return _lws_processor(hp).stft(y).T
|
|
else:
|
|
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
|
|
|
##########################################################
|
|
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
|
def num_frames(length, fsize, fshift):
|
|
"""Compute number of time frames of spectrogram
|
|
"""
|
|
pad = (fsize - fshift)
|
|
if length % fshift == 0:
|
|
M = (length + pad * 2 - fsize) // fshift + 1
|
|
else:
|
|
M = (length + pad * 2 - fsize) // fshift + 2
|
|
return M
|
|
|
|
|
|
def pad_lr(x, fsize, fshift):
|
|
"""Compute left and right padding
|
|
"""
|
|
M = num_frames(len(x), fsize, fshift)
|
|
pad = (fsize - fshift)
|
|
T = len(x) + 2 * pad
|
|
r = (M - 1) * fshift + fsize - T
|
|
return pad, pad + r
|
|
##########################################################
|
|
#Librosa correct padding
|
|
def librosa_pad_lr(x, fsize, fshift):
|
|
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
|
|
|
# Conversions
|
|
_mel_basis = None
|
|
|
|
def _linear_to_mel(spectogram):
|
|
global _mel_basis
|
|
if _mel_basis is None:
|
|
_mel_basis = _build_mel_basis()
|
|
return np.dot(_mel_basis, spectogram)
|
|
|
|
def _build_mel_basis():
|
|
assert hp.fmax <= hp.sample_rate // 2
|
|
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
|
|
fmin=hp.fmin, fmax=hp.fmax)
|
|
|
|
def _amp_to_db(x):
|
|
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
|
return 20 * np.log10(np.maximum(min_level, x))
|
|
|
|
def _db_to_amp(x):
|
|
return np.power(10.0, (x) * 0.05)
|
|
|
|
def _normalize(S):
|
|
if hp.allow_clipping_in_normalization:
|
|
if hp.symmetric_mels:
|
|
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
|
|
-hp.max_abs_value, hp.max_abs_value)
|
|
else:
|
|
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
|
|
|
|
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
|
|
if hp.symmetric_mels:
|
|
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
|
|
else:
|
|
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
|
|
|
|
def _denormalize(D):
|
|
if hp.allow_clipping_in_normalization:
|
|
if hp.symmetric_mels:
|
|
return (((np.clip(D, -hp.max_abs_value,
|
|
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
|
|
+ hp.min_level_db)
|
|
else:
|
|
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
|
|
|
if hp.symmetric_mels:
|
|
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
|
|
else:
|
|
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) |