Files
MuseTalk/musetalk/utils/face_parsing/__init__.py
aidenyzhang db204311a5 v1.5
2025-03-28 16:03:02 +08:00

118 lines
4.6 KiB
Python
Executable File

import torch
import time
import os
import cv2
import numpy as np
from PIL import Image
from .model import BiSeNet
import torchvision.transforms as transforms
class FaceParsing():
def __init__(self, left_cheek_width=80, right_cheek_width=80):
self.net = self.model_init()
self.preprocess = self.image_preprocess()
# Ensure all size parameters are integers
cone_height = 21
tail_height = 12
total_size = cone_height + tail_height
# Create kernel with explicit integer dimensions
kernel = np.zeros((total_size, total_size), dtype=np.uint8)
center_x = total_size // 2 # Ensure center coordinates are integers
# Cone part
for row in range(cone_height):
if row < cone_height//2:
continue
width = int(2 * (row - cone_height//2) + 1)
start = int(center_x - (width // 2))
end = int(center_x + (width // 2) + 1)
kernel[row, start:end] = 1
# Vertical extension part
if cone_height > 0:
base_width = int(kernel[cone_height-1].sum())
else:
base_width = 1
for row in range(cone_height, total_size):
start = max(0, int(center_x - (base_width//2)))
end = min(total_size, int(center_x + (base_width//2) + 1))
kernel[row, start:end] = 1
self.kernel = kernel
# Modify cheek erosion kernel to be flatter ellipse
self.cheek_kernel = cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (35, 3))
# Add cheek area mask (protect chin area)
self.cheek_mask = self._create_cheek_mask(left_cheek_width=left_cheek_width, right_cheek_width=right_cheek_width)
def _create_cheek_mask(self, left_cheek_width=80, right_cheek_width=80):
"""Create cheek area mask (1/4 area on both sides)"""
mask = np.zeros((512, 512), dtype=np.uint8)
center = 512 // 2
cv2.rectangle(mask, (0, 0), (center - left_cheek_width, 512), 255, -1) # Left cheek
cv2.rectangle(mask, (center + right_cheek_width, 0), (512, 512), 255, -1) # Right cheek
return mask
def model_init(self,
resnet_path='./models/face-parse-bisent/resnet18-5c106cde.pth',
model_pth='./models/face-parse-bisent/79999_iter.pth'):
net = BiSeNet(resnet_path)
if torch.cuda.is_available():
net.cuda()
net.load_state_dict(torch.load(model_pth))
else:
net.load_state_dict(torch.load(model_pth, map_location=torch.device('cpu')))
net.eval()
return net
def image_preprocess(self):
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
def __call__(self, image, size=(512, 512), mode="jaw"):
if isinstance(image, str):
image = Image.open(image)
width, height = image.size
with torch.no_grad():
image = image.resize(size, Image.BILINEAR)
img = self.preprocess(image)
if torch.cuda.is_available():
img = torch.unsqueeze(img, 0).cuda()
else:
img = torch.unsqueeze(img, 0)
out = self.net(img)[0]
parsing = out.squeeze(0).cpu().numpy().argmax(0)
# Add 14:neck, remove 10:nose and 7:8:9
if mode == "neck":
parsing[np.isin(parsing, [1, 11, 12, 13, 14])] = 255
parsing[np.where(parsing!=255)] = 0
elif mode == "jaw":
face_region = np.isin(parsing, [1])*255
face_region = face_region.astype(np.uint8)
original_dilated = cv2.dilate(face_region, self.kernel, iterations=1)
eroded = cv2.erode(original_dilated, self.cheek_kernel, iterations=2)
face_region = cv2.bitwise_and(eroded, self.cheek_mask)
face_region = cv2.bitwise_or(face_region, cv2.bitwise_and(original_dilated, ~self.cheek_mask))
parsing[(face_region==255) & (~np.isin(parsing, [10]))] = 255
parsing[np.isin(parsing, [11, 12, 13])] = 255
parsing[np.where(parsing!=255)] = 0
else:
parsing[np.isin(parsing, [1, 11, 12, 13])] = 255
parsing[np.where(parsing!=255)] = 0
parsing = Image.fromarray(parsing.astype(np.uint8))
return parsing
if __name__ == "__main__":
fp = FaceParsing()
segmap = fp('154_small.png')
segmap.save('res.png')