mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-04 17:39:20 +08:00
* fix: windows infer * docs: update readme * docs: update readme * feat: v1.5 gradio for windows&linux * fix: dependencies * feat: windows infer & gradio --------- Co-authored-by: NeRF-Factory <zzhizhou66@gmail.com>
571 lines
21 KiB
Python
571 lines
21 KiB
Python
import os
|
|
import time
|
|
import pdb
|
|
import re
|
|
|
|
import gradio as gr
|
|
import numpy as np
|
|
import sys
|
|
import subprocess
|
|
|
|
from huggingface_hub import snapshot_download
|
|
import requests
|
|
|
|
import argparse
|
|
import os
|
|
from omegaconf import OmegaConf
|
|
import numpy as np
|
|
import cv2
|
|
import torch
|
|
import glob
|
|
import pickle
|
|
from tqdm import tqdm
|
|
import copy
|
|
from argparse import Namespace
|
|
import shutil
|
|
import gdown
|
|
import imageio
|
|
import ffmpeg
|
|
from moviepy.editor import *
|
|
from transformers import WhisperModel
|
|
|
|
ProjectDir = os.path.abspath(os.path.dirname(__file__))
|
|
CheckpointsDir = os.path.join(ProjectDir, "models")
|
|
|
|
@torch.no_grad()
|
|
def debug_inpainting(video_path, bbox_shift, extra_margin=10, parsing_mode="jaw",
|
|
left_cheek_width=90, right_cheek_width=90):
|
|
"""Debug inpainting parameters, only process the first frame"""
|
|
# Set default parameters
|
|
args_dict = {
|
|
"result_dir": './results/debug',
|
|
"fps": 25,
|
|
"batch_size": 1,
|
|
"output_vid_name": '',
|
|
"use_saved_coord": False,
|
|
"audio_padding_length_left": 2,
|
|
"audio_padding_length_right": 2,
|
|
"version": "v15",
|
|
"extra_margin": extra_margin,
|
|
"parsing_mode": parsing_mode,
|
|
"left_cheek_width": left_cheek_width,
|
|
"right_cheek_width": right_cheek_width
|
|
}
|
|
args = Namespace(**args_dict)
|
|
|
|
# Create debug directory
|
|
os.makedirs(args.result_dir, exist_ok=True)
|
|
|
|
# Read first frame
|
|
if get_file_type(video_path) == "video":
|
|
reader = imageio.get_reader(video_path)
|
|
first_frame = reader.get_data(0)
|
|
reader.close()
|
|
else:
|
|
first_frame = cv2.imread(video_path)
|
|
first_frame = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
|
|
|
# Save first frame
|
|
debug_frame_path = os.path.join(args.result_dir, "debug_frame.png")
|
|
cv2.imwrite(debug_frame_path, cv2.cvtColor(first_frame, cv2.COLOR_RGB2BGR))
|
|
|
|
# Get face coordinates
|
|
coord_list, frame_list = get_landmark_and_bbox([debug_frame_path], bbox_shift)
|
|
bbox = coord_list[0]
|
|
frame = frame_list[0]
|
|
|
|
if bbox == coord_placeholder:
|
|
return None, "No face detected, please adjust bbox_shift parameter"
|
|
|
|
# Initialize face parser
|
|
fp = FaceParsing(
|
|
left_cheek_width=args.left_cheek_width,
|
|
right_cheek_width=args.right_cheek_width
|
|
)
|
|
|
|
# Process first frame
|
|
x1, y1, x2, y2 = bbox
|
|
y2 = y2 + args.extra_margin
|
|
y2 = min(y2, frame.shape[0])
|
|
crop_frame = frame[y1:y2, x1:x2]
|
|
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
|
|
|
|
# Generate random audio features
|
|
random_audio = torch.randn(1, 50, 384, device=device, dtype=weight_dtype)
|
|
audio_feature = pe(random_audio)
|
|
|
|
# Get latents
|
|
latents = vae.get_latents_for_unet(crop_frame)
|
|
latents = latents.to(dtype=weight_dtype)
|
|
|
|
# Generate prediction results
|
|
pred_latents = unet.model(latents, timesteps, encoder_hidden_states=audio_feature).sample
|
|
recon = vae.decode_latents(pred_latents)
|
|
|
|
# Inpaint back to original image
|
|
res_frame = recon[0]
|
|
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
|
|
combine_frame = get_image(frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp)
|
|
|
|
# Save results (no need to convert color space again since get_image already returns RGB format)
|
|
debug_result_path = os.path.join(args.result_dir, "debug_result.png")
|
|
cv2.imwrite(debug_result_path, combine_frame)
|
|
|
|
# Create information text
|
|
info_text = f"Parameter information:\n" + \
|
|
f"bbox_shift: {bbox_shift}\n" + \
|
|
f"extra_margin: {extra_margin}\n" + \
|
|
f"parsing_mode: {parsing_mode}\n" + \
|
|
f"left_cheek_width: {left_cheek_width}\n" + \
|
|
f"right_cheek_width: {right_cheek_width}\n" + \
|
|
f"Detected face coordinates: [{x1}, {y1}, {x2}, {y2}]"
|
|
|
|
return cv2.cvtColor(combine_frame, cv2.COLOR_RGB2BGR), info_text
|
|
|
|
def print_directory_contents(path):
|
|
for child in os.listdir(path):
|
|
child_path = os.path.join(path, child)
|
|
if os.path.isdir(child_path):
|
|
print(child_path)
|
|
|
|
def download_model():
|
|
# 检查必需的模型文件是否存在
|
|
required_models = {
|
|
"MuseTalk": f"{CheckpointsDir}/musetalkV15/unet.pth",
|
|
"MuseTalk": f"{CheckpointsDir}/musetalkV15/musetalk.json",
|
|
"SD VAE": f"{CheckpointsDir}/sd-vae/config.json",
|
|
"Whisper": f"{CheckpointsDir}/whisper/config.json",
|
|
"DWPose": f"{CheckpointsDir}/dwpose/dw-ll_ucoco_384.pth",
|
|
"SyncNet": f"{CheckpointsDir}/syncnet/latentsync_syncnet.pt",
|
|
"Face Parse": f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth",
|
|
"ResNet": f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth"
|
|
}
|
|
|
|
missing_models = []
|
|
for model_name, model_path in required_models.items():
|
|
if not os.path.exists(model_path):
|
|
missing_models.append(model_name)
|
|
|
|
if missing_models:
|
|
# 全用英文
|
|
print("The following required model files are missing:")
|
|
for model in missing_models:
|
|
print(f"- {model}")
|
|
print("\nPlease run the download script to download the missing models:")
|
|
if sys.platform == "win32":
|
|
print("Windows: Run download_weights.bat")
|
|
else:
|
|
print("Linux/Mac: Run ./download_weights.sh")
|
|
sys.exit(1)
|
|
else:
|
|
print("All required model files exist.")
|
|
|
|
|
|
|
|
|
|
download_model() # for huggingface deployment.
|
|
|
|
from musetalk.utils.blending import get_image
|
|
from musetalk.utils.face_parsing import FaceParsing
|
|
from musetalk.utils.audio_processor import AudioProcessor
|
|
from musetalk.utils.utils import get_file_type, get_video_fps, datagen, load_all_model
|
|
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder, get_bbox_range
|
|
|
|
|
|
def fast_check_ffmpeg():
|
|
try:
|
|
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
|
|
@torch.no_grad()
|
|
def inference(audio_path, video_path, bbox_shift, extra_margin=10, parsing_mode="jaw",
|
|
left_cheek_width=90, right_cheek_width=90, progress=gr.Progress(track_tqdm=True)):
|
|
# Set default parameters, aligned with inference.py
|
|
args_dict = {
|
|
"result_dir": './results/output',
|
|
"fps": 25,
|
|
"batch_size": 8,
|
|
"output_vid_name": '',
|
|
"use_saved_coord": False,
|
|
"audio_padding_length_left": 2,
|
|
"audio_padding_length_right": 2,
|
|
"version": "v15", # Fixed use v15 version
|
|
"extra_margin": extra_margin,
|
|
"parsing_mode": parsing_mode,
|
|
"left_cheek_width": left_cheek_width,
|
|
"right_cheek_width": right_cheek_width
|
|
}
|
|
args = Namespace(**args_dict)
|
|
|
|
# Check ffmpeg
|
|
if not fast_check_ffmpeg():
|
|
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
|
|
|
|
input_basename = os.path.basename(video_path).split('.')[0]
|
|
audio_basename = os.path.basename(audio_path).split('.')[0]
|
|
output_basename = f"{input_basename}_{audio_basename}"
|
|
|
|
# Create temporary directory
|
|
temp_dir = os.path.join(args.result_dir, f"{args.version}")
|
|
os.makedirs(temp_dir, exist_ok=True)
|
|
|
|
# Set result save path
|
|
result_img_save_path = os.path.join(temp_dir, output_basename)
|
|
crop_coord_save_path = os.path.join(args.result_dir, "../", input_basename+".pkl")
|
|
os.makedirs(result_img_save_path, exist_ok=True)
|
|
|
|
if args.output_vid_name == "":
|
|
output_vid_name = os.path.join(temp_dir, output_basename+".mp4")
|
|
else:
|
|
output_vid_name = os.path.join(temp_dir, args.output_vid_name)
|
|
|
|
############################################## extract frames from source video ##############################################
|
|
if get_file_type(video_path) == "video":
|
|
save_dir_full = os.path.join(temp_dir, input_basename)
|
|
os.makedirs(save_dir_full, exist_ok=True)
|
|
# Read video
|
|
reader = imageio.get_reader(video_path)
|
|
|
|
# Save images
|
|
for i, im in enumerate(reader):
|
|
imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im)
|
|
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
|
|
fps = get_video_fps(video_path)
|
|
else: # input img folder
|
|
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
|
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
fps = args.fps
|
|
|
|
############################################## extract audio feature ##############################################
|
|
# Extract audio features
|
|
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path)
|
|
whisper_chunks = audio_processor.get_whisper_chunk(
|
|
whisper_input_features,
|
|
device,
|
|
weight_dtype,
|
|
whisper,
|
|
librosa_length,
|
|
fps=fps,
|
|
audio_padding_length_left=args.audio_padding_length_left,
|
|
audio_padding_length_right=args.audio_padding_length_right,
|
|
)
|
|
|
|
############################################## preprocess input image ##############################################
|
|
if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
|
|
print("using extracted coordinates")
|
|
with open(crop_coord_save_path,'rb') as f:
|
|
coord_list = pickle.load(f)
|
|
frame_list = read_imgs(input_img_list)
|
|
else:
|
|
print("extracting landmarks...time consuming")
|
|
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift)
|
|
with open(crop_coord_save_path, 'wb') as f:
|
|
pickle.dump(coord_list, f)
|
|
bbox_shift_text = get_bbox_range(input_img_list, bbox_shift)
|
|
|
|
# Initialize face parser
|
|
fp = FaceParsing(
|
|
left_cheek_width=args.left_cheek_width,
|
|
right_cheek_width=args.right_cheek_width
|
|
)
|
|
|
|
i = 0
|
|
input_latent_list = []
|
|
for bbox, frame in zip(coord_list, frame_list):
|
|
if bbox == coord_placeholder:
|
|
continue
|
|
x1, y1, x2, y2 = bbox
|
|
y2 = y2 + args.extra_margin
|
|
y2 = min(y2, frame.shape[0])
|
|
crop_frame = frame[y1:y2, x1:x2]
|
|
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
|
|
latents = vae.get_latents_for_unet(crop_frame)
|
|
input_latent_list.append(latents)
|
|
|
|
# to smooth the first and the last frame
|
|
frame_list_cycle = frame_list + frame_list[::-1]
|
|
coord_list_cycle = coord_list + coord_list[::-1]
|
|
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
|
|
|
|
############################################## inference batch by batch ##############################################
|
|
print("start inference")
|
|
video_num = len(whisper_chunks)
|
|
batch_size = args.batch_size
|
|
gen = datagen(
|
|
whisper_chunks=whisper_chunks,
|
|
vae_encode_latents=input_latent_list_cycle,
|
|
batch_size=batch_size,
|
|
delay_frame=0,
|
|
device=device,
|
|
)
|
|
res_frame_list = []
|
|
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))):
|
|
audio_feature_batch = pe(whisper_batch)
|
|
# Ensure latent_batch is consistent with model weight type
|
|
latent_batch = latent_batch.to(dtype=weight_dtype)
|
|
|
|
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
|
|
recon = vae.decode_latents(pred_latents)
|
|
for res_frame in recon:
|
|
res_frame_list.append(res_frame)
|
|
|
|
############################################## pad to full image ##############################################
|
|
print("pad talking image to original video")
|
|
for i, res_frame in enumerate(tqdm(res_frame_list)):
|
|
bbox = coord_list_cycle[i%(len(coord_list_cycle))]
|
|
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
|
|
x1, y1, x2, y2 = bbox
|
|
y2 = y2 + args.extra_margin
|
|
y2 = min(y2, frame.shape[0])
|
|
try:
|
|
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
|
|
except:
|
|
continue
|
|
|
|
# Use v15 version blending
|
|
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp)
|
|
|
|
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame)
|
|
|
|
# Frame rate
|
|
fps = 25
|
|
# Output video path
|
|
output_video = 'temp.mp4'
|
|
|
|
# Read images
|
|
def is_valid_image(file):
|
|
pattern = re.compile(r'\d{8}\.png')
|
|
return pattern.match(file)
|
|
|
|
images = []
|
|
files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)]
|
|
files.sort(key=lambda x: int(x.split('.')[0]))
|
|
|
|
for file in files:
|
|
filename = os.path.join(result_img_save_path, file)
|
|
images.append(imageio.imread(filename))
|
|
|
|
|
|
# Save video
|
|
imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p')
|
|
|
|
input_video = './temp.mp4'
|
|
# Check if the input_video and audio_path exist
|
|
if not os.path.exists(input_video):
|
|
raise FileNotFoundError(f"Input video file not found: {input_video}")
|
|
if not os.path.exists(audio_path):
|
|
raise FileNotFoundError(f"Audio file not found: {audio_path}")
|
|
|
|
# Read video
|
|
reader = imageio.get_reader(input_video)
|
|
fps = reader.get_meta_data()['fps'] # Get original video frame rate
|
|
reader.close() # Otherwise, error on win11: PermissionError: [WinError 32] Another program is using this file, process cannot access. : 'temp.mp4'
|
|
# Store frames in list
|
|
frames = images
|
|
|
|
print(len(frames))
|
|
|
|
# Load the video
|
|
video_clip = VideoFileClip(input_video)
|
|
|
|
# Load the audio
|
|
audio_clip = AudioFileClip(audio_path)
|
|
|
|
# Set the audio to the video
|
|
video_clip = video_clip.set_audio(audio_clip)
|
|
|
|
# Write the output video
|
|
video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25)
|
|
|
|
os.remove("temp.mp4")
|
|
#shutil.rmtree(result_img_save_path)
|
|
print(f"result is save to {output_vid_name}")
|
|
return output_vid_name,bbox_shift_text
|
|
|
|
|
|
|
|
# load model weights
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
vae, unet, pe = load_all_model(
|
|
unet_model_path="./models/musetalkV15/unet.pth",
|
|
vae_type="sd-vae",
|
|
unet_config="./models/musetalkV15/musetalk.json",
|
|
device=device
|
|
)
|
|
|
|
# Parse command line arguments
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--ffmpeg_path", type=str, default=r"ffmpeg-master-latest-win64-gpl-shared\bin", help="Path to ffmpeg executable")
|
|
parser.add_argument("--ip", type=str, default="127.0.0.1", help="IP address to bind to")
|
|
parser.add_argument("--port", type=int, default=7860, help="Port to bind to")
|
|
parser.add_argument("--share", action="store_true", help="Create a public link")
|
|
parser.add_argument("--use_float16", action="store_true", help="Use float16 for faster inference")
|
|
args = parser.parse_args()
|
|
|
|
# Set data type
|
|
if args.use_float16:
|
|
# Convert models to half precision for better performance
|
|
pe = pe.half()
|
|
vae.vae = vae.vae.half()
|
|
unet.model = unet.model.half()
|
|
weight_dtype = torch.float16
|
|
else:
|
|
weight_dtype = torch.float32
|
|
|
|
# Move models to specified device
|
|
pe = pe.to(device)
|
|
vae.vae = vae.vae.to(device)
|
|
unet.model = unet.model.to(device)
|
|
|
|
timesteps = torch.tensor([0], device=device)
|
|
|
|
# Initialize audio processor and Whisper model
|
|
audio_processor = AudioProcessor(feature_extractor_path="./models/whisper")
|
|
whisper = WhisperModel.from_pretrained("./models/whisper")
|
|
whisper = whisper.to(device=device, dtype=weight_dtype).eval()
|
|
whisper.requires_grad_(False)
|
|
|
|
|
|
def check_video(video):
|
|
if not isinstance(video, str):
|
|
return video # in case of none type
|
|
# Define the output video file name
|
|
dir_path, file_name = os.path.split(video)
|
|
if file_name.startswith("outputxxx_"):
|
|
return video
|
|
# Add the output prefix to the file name
|
|
output_file_name = "outputxxx_" + file_name
|
|
|
|
os.makedirs('./results',exist_ok=True)
|
|
os.makedirs('./results/output',exist_ok=True)
|
|
os.makedirs('./results/input',exist_ok=True)
|
|
|
|
# Combine the directory path and the new file name
|
|
output_video = os.path.join('./results/input', output_file_name)
|
|
|
|
|
|
# read video
|
|
reader = imageio.get_reader(video)
|
|
fps = reader.get_meta_data()['fps'] # get fps from original video
|
|
|
|
# conver fps to 25
|
|
frames = [im for im in reader]
|
|
target_fps = 25
|
|
|
|
L = len(frames)
|
|
L_target = int(L / fps * target_fps)
|
|
original_t = [x / fps for x in range(1, L+1)]
|
|
t_idx = 0
|
|
target_frames = []
|
|
for target_t in range(1, L_target+1):
|
|
while target_t / target_fps > original_t[t_idx]:
|
|
t_idx += 1 # find the first t_idx so that target_t / target_fps <= original_t[t_idx]
|
|
if t_idx >= L:
|
|
break
|
|
target_frames.append(frames[t_idx])
|
|
|
|
# save video
|
|
imageio.mimwrite(output_video, target_frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p')
|
|
return output_video
|
|
|
|
|
|
|
|
|
|
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.Markdown(
|
|
"""<div align='center'> <h1>MuseTalk: Real-Time High-Fidelity Video Dubbing via Spatio-Temporal Sampling</h1> \
|
|
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
|
|
</br>\
|
|
Yue Zhang <sup>*</sup>,\
|
|
Zhizhou Zhong <sup>*</sup>,\
|
|
Minhao Liu<sup>*</sup>,\
|
|
Zhaokang Chen,\
|
|
Bin Wu<sup>†</sup>,\
|
|
Yubin Zeng,\
|
|
Chao Zhang,\
|
|
Yingjie He,\
|
|
Junxin Huang,\
|
|
Wenjiang Zhou <br>\
|
|
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)\
|
|
Lyra Lab, Tencent Music Entertainment\
|
|
</h2> \
|
|
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Github Repo]</a>\
|
|
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseTalk'>[Huggingface]</a>\
|
|
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2410.10122'> [Technical report] </a>"""
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
audio = gr.Audio(label="Drving Audio",type="filepath")
|
|
video = gr.Video(label="Reference Video",sources=['upload'])
|
|
bbox_shift = gr.Number(label="BBox_shift value, px", value=0)
|
|
extra_margin = gr.Slider(label="Extra Margin", minimum=0, maximum=40, value=10, step=1)
|
|
parsing_mode = gr.Radio(label="Parsing Mode", choices=["jaw", "raw"], value="jaw")
|
|
left_cheek_width = gr.Slider(label="Left Cheek Width", minimum=20, maximum=160, value=90, step=5)
|
|
right_cheek_width = gr.Slider(label="Right Cheek Width", minimum=20, maximum=160, value=90, step=5)
|
|
bbox_shift_scale = gr.Textbox(label="'left_cheek_width' and 'right_cheek_width' parameters determine the range of left and right cheeks editing when parsing model is 'jaw'. The 'extra_margin' parameter determines the movement range of the jaw. Users can freely adjust these three parameters to obtain better inpainting results.")
|
|
|
|
with gr.Row():
|
|
debug_btn = gr.Button("1. Test Inpainting ")
|
|
btn = gr.Button("2. Generate")
|
|
with gr.Column():
|
|
debug_image = gr.Image(label="Test Inpainting Result (First Frame)")
|
|
debug_info = gr.Textbox(label="Parameter Information", lines=5)
|
|
out1 = gr.Video()
|
|
|
|
video.change(
|
|
fn=check_video, inputs=[video], outputs=[video]
|
|
)
|
|
btn.click(
|
|
fn=inference,
|
|
inputs=[
|
|
audio,
|
|
video,
|
|
bbox_shift,
|
|
extra_margin,
|
|
parsing_mode,
|
|
left_cheek_width,
|
|
right_cheek_width
|
|
],
|
|
outputs=[out1,bbox_shift_scale]
|
|
)
|
|
debug_btn.click(
|
|
fn=debug_inpainting,
|
|
inputs=[
|
|
video,
|
|
bbox_shift,
|
|
extra_margin,
|
|
parsing_mode,
|
|
left_cheek_width,
|
|
right_cheek_width
|
|
],
|
|
outputs=[debug_image, debug_info]
|
|
)
|
|
|
|
# Check ffmpeg and add to PATH
|
|
if not fast_check_ffmpeg():
|
|
print(f"Adding ffmpeg to PATH: {args.ffmpeg_path}")
|
|
# According to operating system, choose path separator
|
|
path_separator = ';' if sys.platform == 'win32' else ':'
|
|
os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}"
|
|
if not fast_check_ffmpeg():
|
|
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
|
|
|
|
# Solve asynchronous IO issues on Windows
|
|
if sys.platform == 'win32':
|
|
import asyncio
|
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
|
|
|
# Start Gradio application
|
|
demo.queue().launch(
|
|
share=args.share,
|
|
debug=True,
|
|
server_name=args.ip,
|
|
server_port=args.port
|
|
)
|