Files
MuseTalk/musetalk/loss/discriminator.py
Zhizhou Zhong 1ab53a626b feat: data preprocessing and training (#294)
* docs: update readme

* docs: update readme

* feat: training codes

* feat: data preprocess

* docs: release training
2025-04-04 22:10:03 +08:00

145 lines
5.0 KiB
Python
Executable File

from torch import nn
import torch.nn.functional as F
import torch
from musetalk.loss.vgg_face import ImagePyramide
class DownBlock2d(nn.Module):
"""
Simple block for processing video (encoder).
"""
def __init__(self, in_features, out_features, norm=False, kernel_size=4, pool=False, sn=False):
super(DownBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size)
if sn:
self.conv = nn.utils.spectral_norm(self.conv)
if norm:
self.norm = nn.InstanceNorm2d(out_features, affine=True)
else:
self.norm = None
self.pool = pool
def forward(self, x):
out = x
out = self.conv(out)
if self.norm:
out = self.norm(out)
out = F.leaky_relu(out, 0.2)
if self.pool:
out = F.avg_pool2d(out, (2, 2))
return out
class Discriminator(nn.Module):
"""
Discriminator similar to Pix2Pix
"""
def __init__(self, num_channels=3, block_expansion=64, num_blocks=4, max_features=512,
sn=False, **kwargs):
super(Discriminator, self).__init__()
down_blocks = []
for i in range(num_blocks):
down_blocks.append(
DownBlock2d(num_channels if i == 0 else min(max_features, block_expansion * (2 ** i)),
min(max_features, block_expansion * (2 ** (i + 1))),
norm=(i != 0), kernel_size=4, pool=(i != num_blocks - 1), sn=sn))
self.down_blocks = nn.ModuleList(down_blocks)
self.conv = nn.Conv2d(self.down_blocks[-1].conv.out_channels, out_channels=1, kernel_size=1)
if sn:
self.conv = nn.utils.spectral_norm(self.conv)
def forward(self, x):
feature_maps = []
out = x
for down_block in self.down_blocks:
feature_maps.append(down_block(out))
out = feature_maps[-1]
prediction_map = self.conv(out)
return feature_maps, prediction_map
class MultiScaleDiscriminator(nn.Module):
"""
Multi-scale (scale) discriminator
"""
def __init__(self, scales=(), **kwargs):
super(MultiScaleDiscriminator, self).__init__()
self.scales = scales
discs = {}
for scale in scales:
discs[str(scale).replace('.', '-')] = Discriminator(**kwargs)
self.discs = nn.ModuleDict(discs)
def forward(self, x):
out_dict = {}
for scale, disc in self.discs.items():
scale = str(scale).replace('-', '.')
key = 'prediction_' + scale
#print(key)
#print(x)
feature_maps, prediction_map = disc(x[key])
out_dict['feature_maps_' + scale] = feature_maps
out_dict['prediction_map_' + scale] = prediction_map
return out_dict
class DiscriminatorFullModel(torch.nn.Module):
"""
Merge all discriminator related updates into single model for better multi-gpu usage
"""
def __init__(self, discriminator):
super(DiscriminatorFullModel, self).__init__()
self.discriminator = discriminator
self.scales = self.discriminator.scales
print("scales",self.scales)
self.pyramid = ImagePyramide(self.scales, 3)
if torch.cuda.is_available():
self.pyramid = self.pyramid.cuda()
self.zero_tensor = None
def get_zero_tensor(self, input):
if self.zero_tensor is None:
self.zero_tensor = torch.FloatTensor(1).fill_(0).cuda()
self.zero_tensor.requires_grad_(False)
return self.zero_tensor.expand_as(input)
def forward(self, x, generated, gan_mode='ls'):
pyramide_real = self.pyramid(x)
pyramide_generated = self.pyramid(generated.detach())
discriminator_maps_generated = self.discriminator(pyramide_generated)
discriminator_maps_real = self.discriminator(pyramide_real)
value_total = 0
for scale in self.scales:
key = 'prediction_map_%s' % scale
if gan_mode == 'hinge':
value = -torch.mean(torch.min(discriminator_maps_real[key]-1, self.get_zero_tensor(discriminator_maps_real[key]))) - torch.mean(torch.min(-discriminator_maps_generated[key]-1, self.get_zero_tensor(discriminator_maps_generated[key])))
elif gan_mode == 'ls':
value = ((1 - discriminator_maps_real[key]) ** 2 + discriminator_maps_generated[key] ** 2).mean()
else:
raise ValueError('Unexpected gan_mode {}'.format(self.train_params['gan_mode']))
value_total += value
return value_total
def main():
discriminator = MultiScaleDiscriminator(scales=[1],
block_expansion=32,
max_features=512,
num_blocks=4,
sn=True,
image_channel=3,
estimate_jacobian=False)