mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-05 01:49:20 +08:00
277 lines
13 KiB
Python
277 lines
13 KiB
Python
import os
|
|
import cv2
|
|
import math
|
|
import copy
|
|
import torch
|
|
import glob
|
|
import shutil
|
|
import pickle
|
|
import argparse
|
|
import numpy as np
|
|
import subprocess
|
|
from tqdm import tqdm
|
|
from omegaconf import OmegaConf
|
|
from transformers import WhisperModel
|
|
import sys
|
|
|
|
from musetalk.utils.blending import get_image
|
|
from musetalk.utils.face_parsing import FaceParsing
|
|
from musetalk.utils.audio_processor import AudioProcessor
|
|
from musetalk.utils.utils import get_file_type, get_video_fps, datagen, load_all_model
|
|
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder
|
|
|
|
def fast_check_ffmpeg():
|
|
try:
|
|
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
@torch.no_grad()
|
|
def main(args):
|
|
# Configure ffmpeg path
|
|
if not fast_check_ffmpeg():
|
|
print("Adding ffmpeg to PATH")
|
|
# Choose path separator based on operating system
|
|
path_separator = ';' if sys.platform == 'win32' else ':'
|
|
os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}"
|
|
if not fast_check_ffmpeg():
|
|
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
|
|
|
|
# Set computing device
|
|
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
|
|
# Load model weights
|
|
vae, unet, pe = load_all_model(
|
|
unet_model_path=args.unet_model_path,
|
|
vae_type=args.vae_type,
|
|
unet_config=args.unet_config,
|
|
device=device
|
|
)
|
|
timesteps = torch.tensor([0], device=device)
|
|
|
|
# Convert models to half precision if float16 is enabled
|
|
if args.use_float16:
|
|
pe = pe.half()
|
|
vae.vae = vae.vae.half()
|
|
unet.model = unet.model.half()
|
|
|
|
# Move models to specified device
|
|
pe = pe.to(device)
|
|
vae.vae = vae.vae.to(device)
|
|
unet.model = unet.model.to(device)
|
|
|
|
# Initialize audio processor and Whisper model
|
|
audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir)
|
|
weight_dtype = unet.model.dtype
|
|
whisper = WhisperModel.from_pretrained(args.whisper_dir)
|
|
whisper = whisper.to(device=device, dtype=weight_dtype).eval()
|
|
whisper.requires_grad_(False)
|
|
|
|
# Initialize face parser with configurable parameters based on version
|
|
if args.version == "v15":
|
|
fp = FaceParsing(
|
|
left_cheek_width=args.left_cheek_width,
|
|
right_cheek_width=args.right_cheek_width
|
|
)
|
|
else: # v1
|
|
fp = FaceParsing()
|
|
|
|
# Load inference configuration
|
|
inference_config = OmegaConf.load(args.inference_config)
|
|
print("Loaded inference config:", inference_config)
|
|
|
|
# Process each task
|
|
for task_id in inference_config:
|
|
try:
|
|
# Get task configuration
|
|
video_path = inference_config[task_id]["video_path"]
|
|
audio_path = inference_config[task_id]["audio_path"]
|
|
if "result_name" in inference_config[task_id]:
|
|
args.output_vid_name = inference_config[task_id]["result_name"]
|
|
|
|
# Set bbox_shift based on version
|
|
if args.version == "v15":
|
|
bbox_shift = 0 # v15 uses fixed bbox_shift
|
|
else:
|
|
bbox_shift = inference_config[task_id].get("bbox_shift", args.bbox_shift) # v1 uses config or default
|
|
|
|
# Set output paths
|
|
input_basename = os.path.basename(video_path).split('.')[0]
|
|
audio_basename = os.path.basename(audio_path).split('.')[0]
|
|
output_basename = f"{input_basename}_{audio_basename}"
|
|
|
|
# Create temporary directories
|
|
temp_dir = os.path.join(args.result_dir, f"{args.version}")
|
|
os.makedirs(temp_dir, exist_ok=True)
|
|
|
|
# Set result save paths
|
|
result_img_save_path = os.path.join(temp_dir, output_basename)
|
|
crop_coord_save_path = os.path.join(args.result_dir, "../", input_basename+".pkl")
|
|
os.makedirs(result_img_save_path, exist_ok=True)
|
|
|
|
# Set output video paths
|
|
if args.output_vid_name is None:
|
|
output_vid_name = os.path.join(temp_dir, output_basename + ".mp4")
|
|
else:
|
|
output_vid_name = os.path.join(temp_dir, args.output_vid_name)
|
|
output_vid_name_concat = os.path.join(temp_dir, output_basename + "_concat.mp4")
|
|
|
|
# Extract frames from source video
|
|
if get_file_type(video_path) == "video":
|
|
save_dir_full = os.path.join(temp_dir, input_basename)
|
|
os.makedirs(save_dir_full, exist_ok=True)
|
|
cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png"
|
|
os.system(cmd)
|
|
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
|
|
fps = get_video_fps(video_path)
|
|
elif get_file_type(video_path) == "image":
|
|
input_img_list = [video_path]
|
|
fps = args.fps
|
|
elif os.path.isdir(video_path):
|
|
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
|
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
|
fps = args.fps
|
|
else:
|
|
raise ValueError(f"{video_path} should be a video file, an image file or a directory of images")
|
|
|
|
# Extract audio features
|
|
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path)
|
|
whisper_chunks = audio_processor.get_whisper_chunk(
|
|
whisper_input_features,
|
|
device,
|
|
weight_dtype,
|
|
whisper,
|
|
librosa_length,
|
|
fps=fps,
|
|
audio_padding_length_left=args.audio_padding_length_left,
|
|
audio_padding_length_right=args.audio_padding_length_right,
|
|
)
|
|
|
|
# Preprocess input images
|
|
if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
|
|
print("Using saved coordinates")
|
|
with open(crop_coord_save_path, 'rb') as f:
|
|
coord_list = pickle.load(f)
|
|
frame_list = read_imgs(input_img_list)
|
|
else:
|
|
print("Extracting landmarks... time-consuming operation")
|
|
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift)
|
|
with open(crop_coord_save_path, 'wb') as f:
|
|
pickle.dump(coord_list, f)
|
|
|
|
print(f"Number of frames: {len(frame_list)}")
|
|
|
|
# Process each frame
|
|
input_latent_list = []
|
|
for bbox, frame in zip(coord_list, frame_list):
|
|
if bbox == coord_placeholder:
|
|
continue
|
|
x1, y1, x2, y2 = bbox
|
|
if args.version == "v15":
|
|
y2 = y2 + args.extra_margin
|
|
y2 = min(y2, frame.shape[0])
|
|
crop_frame = frame[y1:y2, x1:x2]
|
|
crop_frame = cv2.resize(crop_frame, (256,256), interpolation=cv2.INTER_LANCZOS4)
|
|
latents = vae.get_latents_for_unet(crop_frame)
|
|
input_latent_list.append(latents)
|
|
|
|
# Smooth first and last frames
|
|
frame_list_cycle = frame_list + frame_list[::-1]
|
|
coord_list_cycle = coord_list + coord_list[::-1]
|
|
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
|
|
|
|
# Batch inference
|
|
print("Starting inference")
|
|
video_num = len(whisper_chunks)
|
|
batch_size = args.batch_size
|
|
gen = datagen(
|
|
whisper_chunks=whisper_chunks,
|
|
vae_encode_latents=input_latent_list_cycle,
|
|
batch_size=batch_size,
|
|
delay_frame=0,
|
|
device=device,
|
|
)
|
|
|
|
res_frame_list = []
|
|
total = int(np.ceil(float(video_num) / batch_size))
|
|
|
|
# Execute inference
|
|
for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=total)):
|
|
audio_feature_batch = pe(whisper_batch)
|
|
latent_batch = latent_batch.to(dtype=unet.model.dtype)
|
|
|
|
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
|
|
recon = vae.decode_latents(pred_latents)
|
|
for res_frame in recon:
|
|
res_frame_list.append(res_frame)
|
|
|
|
# Pad generated images to original video size
|
|
print("Padding generated images to original video size")
|
|
for i, res_frame in enumerate(tqdm(res_frame_list)):
|
|
bbox = coord_list_cycle[i%(len(coord_list_cycle))]
|
|
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
|
|
x1, y1, x2, y2 = bbox
|
|
if args.version == "v15":
|
|
y2 = y2 + args.extra_margin
|
|
y2 = min(y2, frame.shape[0])
|
|
try:
|
|
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1))
|
|
except:
|
|
continue
|
|
|
|
# Merge results with version-specific parameters
|
|
if args.version == "v15":
|
|
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp)
|
|
else:
|
|
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=fp)
|
|
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png", combine_frame)
|
|
|
|
# Save prediction results
|
|
temp_vid_path = f"{temp_dir}/temp_{input_basename}_{audio_basename}.mp4"
|
|
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {temp_vid_path}"
|
|
print("Video generation command:", cmd_img2video)
|
|
os.system(cmd_img2video)
|
|
|
|
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {temp_vid_path} {output_vid_name}"
|
|
print("Audio combination command:", cmd_combine_audio)
|
|
os.system(cmd_combine_audio)
|
|
|
|
# Clean up temporary files
|
|
shutil.rmtree(result_img_save_path)
|
|
os.remove(temp_vid_path)
|
|
|
|
shutil.rmtree(save_dir_full)
|
|
if not args.saved_coord:
|
|
os.remove(crop_coord_save_path)
|
|
|
|
print(f"Results saved to {output_vid_name}")
|
|
except Exception as e:
|
|
print("Error occurred during processing:", e)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable")
|
|
parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use")
|
|
parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model")
|
|
parser.add_argument("--unet_config", type=str, default="./models/musetalk/config.json", help="Path to UNet configuration file")
|
|
parser.add_argument("--unet_model_path", type=str, default="./models/musetalkV15/unet.pth", help="Path to UNet model weights")
|
|
parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model")
|
|
parser.add_argument("--inference_config", type=str, default="configs/inference/test_img.yaml", help="Path to inference configuration file")
|
|
parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value")
|
|
parser.add_argument("--result_dir", default='./results', help="Directory for output results")
|
|
parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping")
|
|
parser.add_argument("--fps", type=int, default=25, help="Video frames per second")
|
|
parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio")
|
|
parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio")
|
|
parser.add_argument("--batch_size", type=int, default=8, help="Batch size for inference")
|
|
parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file")
|
|
parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time')
|
|
parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use')
|
|
parser.add_argument("--use_float16", action="store_true", help="Use float16 for faster inference")
|
|
parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode")
|
|
parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region")
|
|
parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region")
|
|
parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Model version to use")
|
|
args = parser.parse_args()
|
|
main(args)
|