Files
MuseTalk/musetalk/loss/basic_loss.py
Zhizhou Zhong 1ab53a626b feat: data preprocessing and training (#294)
* docs: update readme

* docs: update readme

* feat: training codes

* feat: data preprocess

* docs: release training
2025-04-04 22:10:03 +08:00

82 lines
3.3 KiB
Python
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
import torch.nn as nn
from omegaconf import OmegaConf
import torch
import torch.nn.functional as F
from torch import nn, optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from musetalk.loss.discriminator import MultiScaleDiscriminator,DiscriminatorFullModel
import musetalk.loss.vgg_face as vgg_face
class Interpolate(nn.Module):
def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=None):
super(Interpolate, self).__init__()
self.size = size
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, input):
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)
def set_requires_grad(net, requires_grad=False):
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
if __name__ == "__main__":
cfg = OmegaConf.load("config/audio_adapter/E7.yaml")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pyramid_scale = [1, 0.5, 0.25, 0.125]
vgg_IN = vgg_face.Vgg19().to(device)
pyramid = vgg_face.ImagePyramide(cfg.loss_params.pyramid_scale, 3).to(device)
vgg_IN.eval()
downsampler = Interpolate(size=(224, 224), mode='bilinear', align_corners=False)
image = torch.rand(8, 3, 256, 256).to(device)
image_pred = torch.rand(8, 3, 256, 256).to(device)
pyramide_real = pyramid(downsampler(image))
pyramide_generated = pyramid(downsampler(image_pred))
loss_IN = 0
for scale in cfg.loss_params.pyramid_scale:
x_vgg = vgg_IN(pyramide_generated['prediction_' + str(scale)])
y_vgg = vgg_IN(pyramide_real['prediction_' + str(scale)])
for i, weight in enumerate(cfg.loss_params.vgg_layer_weight):
value = torch.abs(x_vgg[i] - y_vgg[i].detach()).mean()
loss_IN += weight * value
loss_IN /= sum(cfg.loss_params.vgg_layer_weight) # 对vgg不同层取均值金字塔loss是每层叠
print(loss_IN)
#print(cfg.model_params.discriminator_params)
discriminator = MultiScaleDiscriminator(**cfg.model_params.discriminator_params).to(device)
discriminator_full = DiscriminatorFullModel(discriminator)
disc_scales = cfg.model_params.discriminator_params.scales
# Prepare optimizer and loss function
optimizer_D = optim.AdamW(discriminator.parameters(),
lr=cfg.discriminator_train_params.lr,
weight_decay=cfg.discriminator_train_params.weight_decay,
betas=cfg.discriminator_train_params.betas,
eps=cfg.discriminator_train_params.eps)
scheduler_D = CosineAnnealingLR(optimizer_D,
T_max=cfg.discriminator_train_params.epochs,
eta_min=1e-6)
discriminator.train()
set_requires_grad(discriminator, False)
loss_G = 0.
discriminator_maps_generated = discriminator(pyramide_generated)
discriminator_maps_real = discriminator(pyramide_real)
for scale in disc_scales:
key = 'prediction_map_%s' % scale
value = ((1 - discriminator_maps_generated[key]) ** 2).mean()
loss_G += value
print(loss_G)