# Data preprocessing Create two config yaml files, one for training and other for testing (both in same format as configs/inference/test.yaml) The train yaml file should contain the training video paths and corresponding audio paths The test yaml file should contain the validation video paths and corresponding audio paths Run: ``` python -m scripts.data --inference_config path_to_train.yaml --folder_name train python -m scripts.data --inference_config path_to_test.yaml --folder_name test ``` This creates folders which contain the image frames and npy files. ## Data organization ``` ./data/ ├── images │ └──train │ └── 0.png │ └── 1.png │ └── xxx.png │ └──test │ └── 0.png │ └── 1.png │ └── xxx.png ├── audios │ └──train │ └── 0.npy │ └── 1.npy │ └── xxx.npy │ └──test │ └── 0.npy │ └── 1.npy │ └── xxx.npy ``` ## Training Simply run after preparing the preprocessed data ``` sh train.sh ``` ## Inference with trained checkpoit Simply run after training the model, the model checkpoints are saved at train_codes/output usually ``` python -m scripts.inference --inference_config configs/inference/test.yaml --unet_checkpoint path_to_trained_checkpoint_folder ``` ## TODO - [x] release data preprocessing codes - [ ] release some novel designs in training (after technical report)