from PIL import Image import numpy as np import cv2 import copy def get_crop_box(box, expand): x, y, x1, y1 = box x_c, y_c = (x+x1)//2, (y+y1)//2 w, h = x1-x, y1-y s = int(max(w, h)//2*expand) crop_box = [x_c-s, y_c-s, x_c+s, y_c+s] return crop_box, s def face_seg(image, mode="raw", fp=None): """ 对图像进行面部解析,生成面部区域的掩码。 Args: image (PIL.Image): 输入图像。 Returns: PIL.Image: 面部区域的掩码图像。 """ seg_image = fp(image, mode=mode) # 使用 FaceParsing 模型解析面部 if seg_image is None: print("error, no person_segment") # 如果没有检测到面部,返回错误 return None seg_image = seg_image.resize(image.size) # 将掩码图像调整为输入图像的大小 return seg_image def get_image(image, face, face_box, upper_boundary_ratio=0.5, expand=1.5, mode="raw", fp=None): """ 将裁剪的面部图像粘贴回原始图像,并进行一些处理。 Args: image (numpy.ndarray): 原始图像(身体部分)。 face (numpy.ndarray): 裁剪的面部图像。 face_box (tuple): 面部边界框的坐标 (x, y, x1, y1)。 upper_boundary_ratio (float): 用于控制面部区域的保留比例。 expand (float): 扩展因子,用于放大裁剪框。 mode: 融合mask构建方式 Returns: numpy.ndarray: 处理后的图像。 """ # 将 numpy 数组转换为 PIL 图像 body = Image.fromarray(image[:, :, ::-1]) # 身体部分图像(整张图) face = Image.fromarray(face[:, :, ::-1]) # 面部图像 x, y, x1, y1 = face_box # 获取面部边界框的坐标 crop_box, s = get_crop_box(face_box, expand) # 计算扩展后的裁剪框 x_s, y_s, x_e, y_e = crop_box # 裁剪框的坐标 face_position = (x, y) # 面部在原始图像中的位置 # 从身体图像中裁剪出扩展后的面部区域(下巴到边界有距离) face_large = body.crop(crop_box) ori_shape = face_large.size # 裁剪后图像的原始尺寸 # 对裁剪后的面部区域进行面部解析,生成掩码 mask_image = face_seg(face_large, mode=mode, fp=fp) mask_small = mask_image.crop((x - x_s, y - y_s, x1 - x_s, y1 - y_s)) # 裁剪出面部区域的掩码 mask_image = Image.new('L', ori_shape, 0) # 创建一个全黑的掩码图像 mask_image.paste(mask_small, (x - x_s, y - y_s, x1 - x_s, y1 - y_s)) # 将面部掩码粘贴到全黑图像上 # 保留面部区域的上半部分(用于控制说话区域) width, height = mask_image.size top_boundary = int(height * upper_boundary_ratio) # 计算上半部分的边界 modified_mask_image = Image.new('L', ori_shape, 0) # 创建一个新的全黑掩码图像 modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary)) # 粘贴上半部分掩码 # 对掩码进行高斯模糊,使边缘更平滑 blur_kernel_size = int(0.05 * ori_shape[0] // 2 * 2) + 1 # 计算模糊核大小 mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0) # 高斯模糊 #mask_array = np.array(modified_mask_image) mask_image = Image.fromarray(mask_array) # 将模糊后的掩码转换回 PIL 图像 # 将裁剪的面部图像粘贴回扩展后的面部区域 face_large.paste(face, (x - x_s, y - y_s, x1 - x_s, y1 - y_s)) body.paste(face_large, crop_box[:2], mask_image) body = np.array(body) # 将 PIL 图像转换回 numpy 数组 return body[:, :, ::-1] # 返回处理后的图像(BGR 转 RGB) def get_image_blending(image, face, face_box, mask_array, crop_box): body = Image.fromarray(image[:,:,::-1]) face = Image.fromarray(face[:,:,::-1]) x, y, x1, y1 = face_box x_s, y_s, x_e, y_e = crop_box face_large = body.crop(crop_box) mask_image = Image.fromarray(mask_array) mask_image = mask_image.convert("L") face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s)) body.paste(face_large, crop_box[:2], mask_image) body = np.array(body) return body[:,:,::-1] def get_image_prepare_material(image, face_box, upper_boundary_ratio=0.5, expand=1.5, fp=None, mode="raw"): body = Image.fromarray(image[:,:,::-1]) x, y, x1, y1 = face_box #print(x1-x,y1-y) crop_box, s = get_crop_box(face_box, expand) x_s, y_s, x_e, y_e = crop_box face_large = body.crop(crop_box) ori_shape = face_large.size mask_image = face_seg(face_large, mode=mode, fp=fp) mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s)) mask_image = Image.new('L', ori_shape, 0) mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s)) # keep upper_boundary_ratio of talking area width, height = mask_image.size top_boundary = int(height * upper_boundary_ratio) modified_mask_image = Image.new('L', ori_shape, 0) modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary)) blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1 mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0) return mask_array, crop_box