mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-05 09:59:18 +08:00
v1.5
This commit is contained in:
99
musetalk/utils/audio_processor.py
Executable file
99
musetalk/utils/audio_processor.py
Executable file
@@ -0,0 +1,99 @@
|
||||
import os
|
||||
import math
|
||||
import librosa
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from einops import rearrange
|
||||
from transformers import AutoFeatureExtractor
|
||||
|
||||
class AudioProcessor:
|
||||
def __init__(self, feature_extractor_path="openai/whisper-tiny/"):
|
||||
self.feature_extractor = AutoFeatureExtractor.from_pretrained(feature_extractor_path)
|
||||
|
||||
def get_audio_feature(self, wav_path, start_index=0):
|
||||
if not os.path.exists(wav_path):
|
||||
return None
|
||||
librosa_output, sampling_rate = librosa.load(wav_path, sr=16000)
|
||||
assert sampling_rate == 16000
|
||||
# Split audio into 30s segments
|
||||
segment_length = 30 * sampling_rate
|
||||
segments = [librosa_output[i:i + segment_length] for i in range(0, len(librosa_output), segment_length)]
|
||||
|
||||
features = []
|
||||
for segment in segments:
|
||||
audio_feature = self.feature_extractor(
|
||||
segment,
|
||||
return_tensors="pt",
|
||||
sampling_rate=sampling_rate
|
||||
).input_features
|
||||
features.append(audio_feature)
|
||||
|
||||
return features, len(librosa_output)
|
||||
|
||||
def get_whisper_chunk(
|
||||
self,
|
||||
whisper_input_features,
|
||||
device,
|
||||
weight_dtype,
|
||||
whisper,
|
||||
librosa_length,
|
||||
fps=25,
|
||||
audio_padding_length_left=2,
|
||||
audio_padding_length_right=2,
|
||||
):
|
||||
audio_feature_length_per_frame = 2 * (audio_padding_length_left + audio_padding_length_right + 1)
|
||||
whisper_feature = []
|
||||
# Process multiple 30s mel input features
|
||||
for input_feature in whisper_input_features:
|
||||
audio_feats = whisper.encoder(input_feature.to(device), output_hidden_states=True).hidden_states
|
||||
audio_feats = torch.stack(audio_feats, dim=2).to(weight_dtype)
|
||||
whisper_feature.append(audio_feats)
|
||||
|
||||
whisper_feature = torch.cat(whisper_feature, dim=1)
|
||||
# Trim the last segment to remove padding
|
||||
sr = 16000
|
||||
audio_fps = 50
|
||||
fps = int(fps)
|
||||
whisper_idx_multiplier = audio_fps / fps
|
||||
num_frames = math.floor((librosa_length / sr)) * fps
|
||||
actual_length = math.floor((librosa_length / sr)) * audio_fps
|
||||
whisper_feature = whisper_feature[:,:actual_length,...]
|
||||
|
||||
# Calculate padding amount
|
||||
padding_nums = math.floor(whisper_idx_multiplier)
|
||||
# Add padding at start and end
|
||||
whisper_feature = torch.cat([
|
||||
torch.zeros_like(whisper_feature[:, :padding_nums * audio_padding_length_left]),
|
||||
whisper_feature,
|
||||
# Add extra padding to prevent out of bounds
|
||||
torch.zeros_like(whisper_feature[:, :padding_nums * 3 * audio_padding_length_right])
|
||||
], 1)
|
||||
|
||||
audio_prompts = []
|
||||
for frame_index in range(num_frames):
|
||||
try:
|
||||
audio_index = math.floor(frame_index * whisper_idx_multiplier)
|
||||
audio_clip = whisper_feature[:, audio_index: audio_index + audio_feature_length_per_frame]
|
||||
assert audio_clip.shape[1] == audio_feature_length_per_frame
|
||||
audio_prompts.append(audio_clip)
|
||||
except Exception as e:
|
||||
print(f"Error occurred: {e}")
|
||||
print(f"whisper_feature.shape: {whisper_feature.shape}")
|
||||
print(f"audio_clip.shape: {audio_clip.shape}")
|
||||
print(f"num frames: {num_frames}, fps: {fps}, whisper_idx_multiplier: {whisper_idx_multiplier}")
|
||||
print(f"frame_index: {frame_index}, audio_index: {audio_index}-{audio_index + audio_feature_length_per_frame}")
|
||||
exit()
|
||||
|
||||
audio_prompts = torch.cat(audio_prompts, dim=0) # T, 10, 5, 384
|
||||
audio_prompts = rearrange(audio_prompts, 'b c h w -> b (c h) w')
|
||||
return audio_prompts
|
||||
|
||||
if __name__ == "__main__":
|
||||
audio_processor = AudioProcessor()
|
||||
wav_path = "/cfs-workspace/users/gozhong/codes/musetalk_opensource2/data/audio/2.wav"
|
||||
audio_feature, librosa_feature_length = audio_processor.get_audio_feature(wav_path)
|
||||
print("Audio Feature shape:", audio_feature.shape)
|
||||
print("librosa_feature_length:", librosa_feature_length)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user