Update draft training codes

This commit is contained in:
czk32611
2024-04-28 11:34:49 +08:00
parent 6e32247cb1
commit d73daf1808
9 changed files with 1547 additions and 0 deletions

642
train_codes/train.py Executable file
View File

@@ -0,0 +1,642 @@
import argparse
import itertools
import math
import os
import random
from pathlib import Path
import json
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from PIL import Image, ImageDraw
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from DataLoader import Dataset
from utils.utils import preprocess_img_tensor
from torch.utils import data as data_utils
from model_utils import validation,PositionalEncoding
import time
import pandas as pd
from PIL import Image
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.13.0.dev0")
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--unet_config_file",
type=str,
default=None,
required=True,
help="the configuration of unet file.",
)
parser.add_argument(
"--reconstruction",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--data_root",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--testing_speed", action="store_true", help="Whether to caculate the running time")
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=1000,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint and are suitable for resuming training"
" using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--validation_steps",
type=int,
default=1000,
help=(
"Conduct validation every X updates."
),
)
parser.add_argument(
"--val_out_dir",
type=str,
default = '',
help=(
"Conduct validation every X updates."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more docs"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--use_audio_length_left",
type=int,
default=1,
help="number of audio length (left).",
)
parser.add_argument(
"--use_audio_length_right",
type=int,
default=1,
help="number of audio length (right)",
)
parser.add_argument(
"--whisper_model_type",
type=str,
default="landmark_nearest",
choices=["tiny","largeV2"],
help="Determine whisper feature type",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
def main():
args = parse_args()
print(args)
args.output_dir = f"output/{args.output_dir}"
args.val_out_dir = f"val/{args.val_out_dir}"
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.val_out_dir, exist_ok=True)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
logging_dir = Path(args.output_dir, args.logging_dir)
project_config = ProjectConfiguration(
total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir
)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
project_config=project_config,
)
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
)
if args.seed is not None:
# set_seed(args.seed)
set_seed(seed + accelerator.process_index)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
# Load models and create wrapper for stable diffusion
with open(args.unet_config_file, 'r') as f:
unet_config = json.load(f)
#text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
# Todo:
print("Loading AutoencoderKL")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae')
vae_fp32 = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
print("Loading UNet2DConditionModel")
unet = UNet2DConditionModel(**unet_config)
if args.whisper_model_type == "tiny":
pe = PositionalEncoding(d_model=384)
elif args.whisper_model_type == "largeV2":
pe = PositionalEncoding(d_model=1280)
else:
print(f"not support whisper_model_type {args.whisper_model_type}")
print("Loading models done...")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = (
itertools.chain(unet.parameters())
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
print("loading train_dataset ...")
train_dataset = Dataset(args.data_root,
'train',
use_audio_length_left=args.use_audio_length_left,
use_audio_length_right=args.use_audio_length_right,
whisper_model_type=args.whisper_model_type
)
print("train_dataset:",train_dataset.__len__())
train_data_loader = data_utils.DataLoader(
train_dataset, batch_size=args.train_batch_size, shuffle=True,
num_workers=8)
print("loading val_dataset ...")
val_dataset = Dataset(args.data_root,
'val',
use_audio_length_left=args.use_audio_length_left,
use_audio_length_right=args.use_audio_length_right,
whisper_model_type=args.whisper_model_type
)
print("val_dataset:",val_dataset.__len__())
val_data_loader = data_utils.DataLoader(
val_dataset, batch_size=1, shuffle=False,
num_workers=8)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_data_loader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
)
unet, optimizer, train_data_loader, val_data_loader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_data_loader, val_data_loader,lr_scheduler
)
vae.requires_grad_(False)
vae_fp32.requires_grad_(False)
weight_dtype = torch.float32
vae_fp32.to(accelerator.device, dtype=weight_dtype)
vae_fp32.encoder = None
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device, dtype=weight_dtype)
vae.decoder = None
pe.to(accelerator.device, dtype=weight_dtype)
num_update_steps_per_epoch = math.ceil(len(train_data_loader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_data_loader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
print(f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run.")
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
# caluate the elapsed time
elapsed_time = []
start = time.time()
for epoch in range(first_epoch, args.num_train_epochs):
unet.train()
# for step, batch in enumerate(train_dataloader):
for step, (ref_image, image, masked_image, masks, audio_feature) in enumerate(train_data_loader):
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
dataloader_time = time.time() - start
start = time.time()
masks = masks.unsqueeze(1).unsqueeze(1).to(vae.device)
"""
print("=============epoch:{0}=step:{1}=====".format(epoch,step))
print("ref_image: ",ref_image.shape)
print("masks: ", masks.shape)
print("masked_image: ", masked_image.shape)
print("audio feature: ", audio_feature.shape)
print("image: ", image.shape)
"""
ref_image = preprocess_img_tensor(ref_image).to(vae.device)
image = preprocess_img_tensor(image).to(vae.device)
masked_image = preprocess_img_tensor(masked_image).to(vae.device)
img_process_time = time.time() - start
start = time.time()
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(image.to(dtype=weight_dtype)).latent_dist.sample() # init image
latents = latents * vae.config.scaling_factor
# Convert masked images to latent space
masked_latents = vae.encode(
masked_image.reshape(image.shape).to(dtype=weight_dtype) # masked image
).latent_dist.sample()
masked_latents = masked_latents * vae.config.scaling_factor
# Convert ref images to latent space
ref_latents = vae.encode(
ref_image.reshape(image.shape).to(dtype=weight_dtype) # ref image
).latent_dist.sample()
ref_latents = ref_latents * vae.config.scaling_factor
vae_time = time.time() - start
start = time.time()
mask = torch.stack(
[
torch.nn.functional.interpolate(mask, size=(mask.shape[-1] // 8, mask.shape[-1] // 8))
for mask in masks
]
)
mask = mask.reshape(-1, 1, mask.shape[-1], mask.shape[-1])
bsz = latents.shape[0]
# fix timestep for each image
timesteps = torch.tensor([0], device=latents.device)
# concatenate the latents with the mask and the masked latents
"""
print("=============vae latents=====".format(epoch,step))
print("ref_latents: ",ref_latents.shape)
print("mask: ", mask.shape)
print("masked_latents: ", masked_latents.shape)
"""
if unet_config['in_channels'] == 9:
latent_model_input = torch.cat([mask, masked_latents, ref_latents], dim=1)
else:
latent_model_input = torch.cat([masked_latents, ref_latents], dim=1)
audio_feature = audio_feature.to(dtype=weight_dtype)
# Predict the noise residual
image_pred = unet(latent_model_input, timesteps, encoder_hidden_states = audio_feature).sample
if args.reconstruction: # decode the image from the predicted latents
image_pred_img = (1 / vae_fp32.config.scaling_factor) * image_pred
image_pred_img = vae_fp32.decode(image_pred_img).sample
# Mask the top half of the image and calculate the loss only for the lower half of the image.
image_pred_img = image_pred_img[:, :, image_pred_img.shape[2]//2:, :]
image = image[:, :, image.shape[2]//2:, :]
loss_lip = F.l1_loss(image_pred_img.float(), image.float(), reduction="mean") # the loss of the decoded images
loss_latents = F.l1_loss(image_pred.float(), latents.float(), reduction="mean") # the loss of the latents
loss = 2.0*loss_lip + loss_latents # add some weight to balance the loss
else:
loss = F.mse_loss(image_pred.float(), latents.float(), reduction="mean")
#
unet_elapsed_time = time.time() - start
start = time.time()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(unet.parameters())
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
backward_elapsed_time = time.time() - start
start = time.time()
if args.testing_speed is True and accelerator.is_main_process:
elapsed_time.append(
[dataloader_time, unet_elapsed_time, vae_time, backward_elapsed_time,img_process_time]
)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if global_step % args.validation_steps == 0:
if accelerator.is_main_process:
logger.info(
f"Running validation... epoch={epoch}, global_step={global_step}"
)
print("===========start validation==========")
validation(
vae=accelerator.unwrap_model(vae),
vae_fp32=accelerator.unwrap_model(vae_fp32),
unet=accelerator.unwrap_model(unet),
unet_config=unet_config,
weight_dtype=weight_dtype,
epoch=epoch,
global_step=global_step,
val_data_loader=val_data_loader,
output_dir = args.val_out_dir,
whisper_model_type = args.whisper_model_type
)
logger.info(f"Saved samples to images/val")
start = time.time()
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0],
"unet": unet_elapsed_time,
"backward": backward_elapsed_time,
"data": dataloader_time,
"img_process":img_process_time,
"vae":vae_time
}
progress_bar.set_postfix(**logs)
# accelerator.log(logs, step=global_step)
accelerator.log(
{
"loss/step_loss": logs["loss"],
"parameter/lr": logs["lr"],
"time/unet_forward_time": unet_elapsed_time,
"time/unet_backward_time": backward_elapsed_time,
"time/data_time": dataloader_time,
"time/img_process_time":img_process_time,
"time/vae_time": vae_time
},
step=global_step,
)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
main()