diff --git a/README.md b/README.md index 347fbbe..47a67b4 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,7 @@ Chao Zhan, Wenjiang Zhou (*Equal Contribution, †Corresponding Author, benbinwu@tencent.com) -**[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **Project (comming soon)** **Technical report (comming soon)** +**[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **[gradio](https://huggingface.co/spaces/TMElyralab/MuseTalk)** **Project (comming soon)** **Technical report (comming soon)** We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ on an NVIDIA Tesla V100). MuseTalk can be applied with input videos, e.g., generated by [MuseV](https://github.com/TMElyralab/MuseV), as a complete virtual human solution. @@ -26,7 +26,8 @@ We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ 1. training codes (comming soon). # News -- [04/02/2024] Released MuseTalk project and pretrained models. +- [04/02/2024] Release MuseTalk project and pretrained models. +- [04/16/2024] Release Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk) on HuggingFace Spaces (thanks to HF team for their community grant) ## Model  @@ -158,14 +159,22 @@ MuseTalk was trained in latent spaces, where the images were encoded by a freeze # TODO: - [x] trained models and inference codes. +- [x] Huggingface Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk). +- [ ] codes for real-time inference. - [ ] technical report. - [ ] training codes. -- [ ] online UI. - [ ] a better model (may take longer). # Getting Started We provide a detailed tutorial about the installation and the basic usage of MuseTalk for new users: + +## Third party integration +Thanks for the third-party integration, which makes installation and use more convenient for everyone. +We also hope you note that we have not verified, maintained, or updated third-party. Please refer to this project for specific results. + +### [ComfyUI](https://github.com/chaojie/ComfyUI-MuseTalk) + ## Installation To prepare the Python environment and install additional packages such as opencv, diffusers, mmcv, etc., please follow the steps below: ### Build environment diff --git a/app.py b/app.py new file mode 100644 index 0000000..87cf64e --- /dev/null +++ b/app.py @@ -0,0 +1,410 @@ +import os +import time +import pdb +import re + +import gradio as gr +import spaces +import numpy as np +import sys +import subprocess + +from huggingface_hub import snapshot_download +import requests + +import argparse +import os +from omegaconf import OmegaConf +import numpy as np +import cv2 +import torch +import glob +import pickle +from tqdm import tqdm +import copy +from argparse import Namespace +import shutil +import gdown +import imageio +import ffmpeg +from moviepy.editor import * + + +ProjectDir = os.path.abspath(os.path.dirname(__file__)) +CheckpointsDir = os.path.join(ProjectDir, "models") + +def print_directory_contents(path): + for child in os.listdir(path): + child_path = os.path.join(path, child) + if os.path.isdir(child_path): + print(child_path) + +def download_model(): + if not os.path.exists(CheckpointsDir): + os.makedirs(CheckpointsDir) + print("Checkpoint Not Downloaded, start downloading...") + tic = time.time() + snapshot_download( + repo_id="TMElyralab/MuseTalk", + local_dir=CheckpointsDir, + max_workers=8, + local_dir_use_symlinks=True, + ) + # weight + os.makedirs(f"{CheckpointsDir}/sd-vae-ft-mse/") + snapshot_download( + repo_id="stabilityai/sd-vae-ft-mse", + local_dir=CheckpointsDir+'/sd-vae-ft-mse', + max_workers=8, + local_dir_use_symlinks=True, + ) + #dwpose + os.makedirs(f"{CheckpointsDir}/dwpose/") + snapshot_download( + repo_id="yzd-v/DWPose", + local_dir=CheckpointsDir+'/dwpose', + max_workers=8, + local_dir_use_symlinks=True, + ) + #vae + url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt" + response = requests.get(url) + # 确保请求成功 + if response.status_code == 200: + # 指定文件保存的位置 + file_path = f"{CheckpointsDir}/whisper/tiny.pt" + os.makedirs(f"{CheckpointsDir}/whisper/") + # 将文件内容写入指定位置 + with open(file_path, "wb") as f: + f.write(response.content) + else: + print(f"请求失败,状态码:{response.status_code}") + #gdown face parse + url = "https://drive.google.com/uc?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812" + os.makedirs(f"{CheckpointsDir}/face-parse-bisent/") + file_path = f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth" + gdown.download(url, file_path, quiet=False) + #resnet + url = "https://download.pytorch.org/models/resnet18-5c106cde.pth" + response = requests.get(url) + # 确保请求成功 + if response.status_code == 200: + # 指定文件保存的位置 + file_path = f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth" + # 将文件内容写入指定位置 + with open(file_path, "wb") as f: + f.write(response.content) + else: + print(f"请求失败,状态码:{response.status_code}") + + + toc = time.time() + + print(f"download cost {toc-tic} seconds") + print_directory_contents(CheckpointsDir) + + else: + print("Already download the model.") + + + + + +download_model() # for huggingface deployment. + + +from musetalk.utils.utils import get_file_type,get_video_fps,datagen +from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder,get_bbox_range +from musetalk.utils.blending import get_image +from musetalk.utils.utils import load_all_model + + + + + + +@spaces.GPU(duration=600) +@torch.no_grad() +def inference(audio_path,video_path,bbox_shift,progress=gr.Progress(track_tqdm=True)): + args_dict={"result_dir":'./results/output', "fps":25, "batch_size":8, "output_vid_name":'', "use_saved_coord":False}#same with inferenece script + args = Namespace(**args_dict) + + input_basename = os.path.basename(video_path).split('.')[0] + audio_basename = os.path.basename(audio_path).split('.')[0] + output_basename = f"{input_basename}_{audio_basename}" + result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs + crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") # only related to video input + os.makedirs(result_img_save_path,exist_ok =True) + + if args.output_vid_name=="": + output_vid_name = os.path.join(args.result_dir, output_basename+".mp4") + else: + output_vid_name = os.path.join(args.result_dir, args.output_vid_name) + ############################################## extract frames from source video ############################################## + if get_file_type(video_path)=="video": + save_dir_full = os.path.join(args.result_dir, input_basename) + os.makedirs(save_dir_full,exist_ok = True) + # cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png" + # os.system(cmd) + # 读取视频 + reader = imageio.get_reader(video_path) + + # 保存图片 + for i, im in enumerate(reader): + imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im) + input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) + fps = get_video_fps(video_path) + else: # input img folder + input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) + input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) + fps = args.fps + #print(input_img_list) + ############################################## extract audio feature ############################################## + whisper_feature = audio_processor.audio2feat(audio_path) + whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) + ############################################## preprocess input image ############################################## + if os.path.exists(crop_coord_save_path) and args.use_saved_coord: + print("using extracted coordinates") + with open(crop_coord_save_path,'rb') as f: + coord_list = pickle.load(f) + frame_list = read_imgs(input_img_list) + else: + print("extracting landmarks...time consuming") + coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) + with open(crop_coord_save_path, 'wb') as f: + pickle.dump(coord_list, f) + bbox_shift_text=get_bbox_range(input_img_list, bbox_shift) + i = 0 + input_latent_list = [] + for bbox, frame in zip(coord_list, frame_list): + if bbox == coord_placeholder: + continue + x1, y1, x2, y2 = bbox + crop_frame = frame[y1:y2, x1:x2] + crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) + latents = vae.get_latents_for_unet(crop_frame) + input_latent_list.append(latents) + + # to smooth the first and the last frame + frame_list_cycle = frame_list + frame_list[::-1] + coord_list_cycle = coord_list + coord_list[::-1] + input_latent_list_cycle = input_latent_list + input_latent_list[::-1] + ############################################## inference batch by batch ############################################## + print("start inference") + video_num = len(whisper_chunks) + batch_size = args.batch_size + gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size) + res_frame_list = [] + for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): + + tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch] + audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384 + audio_feature_batch = pe(audio_feature_batch) + + pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample + recon = vae.decode_latents(pred_latents) + for res_frame in recon: + res_frame_list.append(res_frame) + + ############################################## pad to full image ############################################## + print("pad talking image to original video") + for i, res_frame in enumerate(tqdm(res_frame_list)): + bbox = coord_list_cycle[i%(len(coord_list_cycle))] + ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) + x1, y1, x2, y2 = bbox + try: + res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) + except: + # print(bbox) + continue + + combine_frame = get_image(ori_frame,res_frame,bbox) + cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame) + + # cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p temp.mp4" + # print(cmd_img2video) + # os.system(cmd_img2video) + # 帧率 + fps = 25 + # 图片路径 + # 输出视频路径 + output_video = 'temp.mp4' + + # 读取图片 + def is_valid_image(file): + pattern = re.compile(r'\d{8}\.png') + return pattern.match(file) + + images = [] + files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)] + files.sort(key=lambda x: int(x.split('.')[0])) + + for file in files: + filename = os.path.join(result_img_save_path, file) + images.append(imageio.imread(filename)) + + + # 保存视频 + imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p') + + # cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}" + # print(cmd_combine_audio) + # os.system(cmd_combine_audio) + + input_video = './temp.mp4' + # Check if the input_video and audio_path exist + if not os.path.exists(input_video): + raise FileNotFoundError(f"Input video file not found: {input_video}") + if not os.path.exists(audio_path): + raise FileNotFoundError(f"Audio file not found: {audio_path}") + + # 读取视频 + reader = imageio.get_reader(input_video) + fps = reader.get_meta_data()['fps'] # 获取原视频的帧率 + + # 将帧存储在列表中 + frames = images + + # 保存视频并添加音频 + # imageio.mimwrite(output_vid_name, frames, 'FFMPEG', fps=fps, codec='libx264', audio_codec='aac', input_params=['-i', audio_path]) + + # input_video = ffmpeg.input(input_video) + + # input_audio = ffmpeg.input(audio_path) + + print(len(frames)) + + # imageio.mimwrite( + # output_video, + # frames, + # 'FFMPEG', + # fps=25, + # codec='libx264', + # audio_codec='aac', + # input_params=['-i', audio_path], + # output_params=['-y'], # Add the '-y' flag to overwrite the output file if it exists + # ) + # writer = imageio.get_writer(output_vid_name, fps = 25, codec='libx264', quality=10, pixelformat='yuvj444p') + # for im in frames: + # writer.append_data(im) + # writer.close() + + + + + # Load the video + video_clip = VideoFileClip(input_video) + + # Load the audio + audio_clip = AudioFileClip(audio_path) + + # Set the audio to the video + video_clip = video_clip.set_audio(audio_clip) + + # Write the output video + video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25) + + os.remove("temp.mp4") + #shutil.rmtree(result_img_save_path) + print(f"result is save to {output_vid_name}") + return output_vid_name,bbox_shift_text + + + +# load model weights +audio_processor,vae,unet,pe = load_all_model() +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") +timesteps = torch.tensor([0], device=device) + + + + +def check_video(video): + if not isinstance(video, str): + return video # in case of none type + # Define the output video file name + dir_path, file_name = os.path.split(video) + if file_name.startswith("outputxxx_"): + return video + # Add the output prefix to the file name + output_file_name = "outputxxx_" + file_name + + os.makedirs('./results',exist_ok=True) + os.makedirs('./results/output',exist_ok=True) + os.makedirs('./results/input',exist_ok=True) + + # Combine the directory path and the new file name + output_video = os.path.join('./results/input', output_file_name) + + + # # Run the ffmpeg command to change the frame rate to 25fps + # command = f"ffmpeg -i {video} -r 25 -vcodec libx264 -vtag hvc1 -pix_fmt yuv420p crf 18 {output_video} -y" + + # 读取视频 + reader = imageio.get_reader(video) + fps = reader.get_meta_data()['fps'] # 获取原视频的帧率 + + # 将帧存储在列表中 + frames = [im for im in reader] + + # 保存视频 + imageio.mimwrite(output_video, frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p') + return output_video + + + + +css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}""" + +with gr.Blocks(css=css) as demo: + gr.Markdown( + "