feat: real-time infer (#286)

* feat: realtime infer

* cchore: infer script
This commit is contained in:
Zhizhou Zhong
2025-04-02 19:13:18 +08:00
committed by GitHub
parent fbe6a97dff
commit 39ccf69f36
11 changed files with 490 additions and 592 deletions

View File

@@ -10,26 +10,22 @@ import sys
from tqdm import tqdm
import copy
import json
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
from musetalk.utils.utils import load_all_model
import shutil
from transformers import WhisperModel
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.utils import datagen
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs
from musetalk.utils.blending import get_image_prepare_material, get_image_blending
from musetalk.utils.utils import load_all_model
from musetalk.utils.audio_processor import AudioProcessor
import shutil
import threading
import queue
import time
# load model weights
audio_processor, vae, unet, pe = load_all_model()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
timesteps = torch.tensor([0], device=device)
pe = pe.half()
vae.vae = vae.vae.half()
unet.model = unet.model.half()
def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000):
def video2imgs(vid_path, save_path, ext='.png', cut_frame=10000000):
cap = cv2.VideoCapture(vid_path)
count = 0
while True:
@@ -42,35 +38,43 @@ def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000):
else:
break
def osmakedirs(path_list):
for path in path_list:
os.makedirs(path) if not os.path.exists(path) else None
@torch.no_grad()
@torch.no_grad()
class Avatar:
def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation):
self.avatar_id = avatar_id
self.video_path = video_path
self.bbox_shift = bbox_shift
self.avatar_path = f"./results/avatars/{avatar_id}"
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
# 根据版本设置不同的基础路径
if args.version == "v15":
self.base_path = f"./results/{args.version}/avatars/{avatar_id}"
else: # v1
self.base_path = f"./results/avatars/{avatar_id}"
self.avatar_path = self.base_path
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.latents_out_path= f"{self.avatar_path}/latents.pt"
self.latents_out_path = f"{self.avatar_path}/latents.pt"
self.video_out_path = f"{self.avatar_path}/vid_output/"
self.mask_out_path =f"{self.avatar_path}/mask"
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
self.mask_out_path = f"{self.avatar_path}/mask"
self.mask_coords_path = f"{self.avatar_path}/mask_coords.pkl"
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
self.avatar_info = {
"avatar_id":avatar_id,
"video_path":video_path,
"bbox_shift":bbox_shift
"avatar_id": avatar_id,
"video_path": video_path,
"bbox_shift": bbox_shift,
"version": args.version
}
self.preparation = preparation
self.batch_size = batch_size
self.idx = 0
self.init()
def init(self):
if self.preparation:
if os.path.exists(self.avatar_path):
@@ -80,7 +84,7 @@ class Avatar:
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
self.input_latent_list_cycle = torch.load(self.latents_out_path)
@@ -98,16 +102,16 @@ class Avatar:
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
else:
if not os.path.exists(self.avatar_path):
print(f"{self.avatar_id} does not exist, you should set preparation to True")
sys.exit()
with open(self.avatar_info_path, "r") as f:
avatar_info = json.load(f)
if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']:
response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)")
if response.lower() == "c":
@@ -115,11 +119,11 @@ class Avatar:
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
sys.exit()
else:
else:
self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
@@ -131,36 +135,40 @@ class Avatar:
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
def prepare_material(self):
print("preparing data materials ... ...")
with open(self.avatar_info_path, "w") as f:
json.dump(self.avatar_info, f)
if os.path.isfile(self.video_path):
video2imgs(self.video_path, self.full_imgs_path, ext = 'png')
video2imgs(self.video_path, self.full_imgs_path, ext='png')
else:
print(f"copy files in {self.video_path}")
files = os.listdir(self.video_path)
files.sort()
files = [file for file in files if file.split(".")[-1]=="png"]
files = [file for file in files if file.split(".")[-1] == "png"]
for filename in files:
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
print("extracting landmarks...")
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift)
input_latent_list = []
idx = -1
# maker if the bbox is not sufficient
coord_placeholder = (0.0,0.0,0.0,0.0)
# maker if the bbox is not sufficient
coord_placeholder = (0.0, 0.0, 0.0, 0.0)
for bbox, frame in zip(coord_list, frame_list):
idx = idx + 1
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
if args.version == "v15":
y2 = y2 + args.extra_margin
y2 = min(y2, frame.shape[0])
coord_list[idx] = [x1, y1, x2, y2] # 更新coord_list中的bbox
crop_frame = frame[y1:y2, x1:x2]
resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
resized_crop_frame = cv2.resize(crop_frame, (256, 256), interpolation=cv2.INTER_LANCZOS4)
latents = vae.get_latents_for_unet(resized_crop_frame)
input_latent_list.append(latents)
@@ -170,112 +178,116 @@ class Avatar:
self.mask_coords_list_cycle = []
self.mask_list_cycle = []
for i,frame in enumerate(tqdm(self.frame_list_cycle)):
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame)
face_box = self.coord_list_cycle[i]
mask,crop_box = get_image_prepare_material(frame,face_box)
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask)
for i, frame in enumerate(tqdm(self.frame_list_cycle)):
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png", frame)
x1, y1, x2, y2 = self.coord_list_cycle[i]
if args.version == "v15":
mode = args.parsing_mode
else:
mode = "raw"
mask, crop_box = get_image_prepare_material(frame, [x1, y1, x2, y2], fp=fp, mode=mode)
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png", mask)
self.mask_coords_list_cycle += [crop_box]
self.mask_list_cycle.append(mask)
with open(self.mask_coords_path, 'wb') as f:
pickle.dump(self.mask_coords_list_cycle, f)
with open(self.coords_path, 'wb') as f:
pickle.dump(self.coord_list_cycle, f)
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
#
def process_frames(self,
res_frame_queue,
video_len,
skip_save_images):
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
def process_frames(self, res_frame_queue, video_len, skip_save_images):
print(video_len)
while True:
if self.idx>=video_len-1:
if self.idx >= video_len - 1:
break
try:
start = time.time()
res_frame = res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
bbox = self.coord_list_cycle[self.idx%(len(self.coord_list_cycle))]
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx%(len(self.frame_list_cycle))])
bbox = self.coord_list_cycle[self.idx % (len(self.coord_list_cycle))]
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx % (len(self.frame_list_cycle))])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
except:
continue
mask = self.mask_list_cycle[self.idx%(len(self.mask_list_cycle))]
mask_crop_box = self.mask_coords_list_cycle[self.idx%(len(self.mask_coords_list_cycle))]
#combine_frame = get_image(ori_frame,res_frame,bbox)
mask = self.mask_list_cycle[self.idx % (len(self.mask_list_cycle))]
mask_crop_box = self.mask_coords_list_cycle[self.idx % (len(self.mask_coords_list_cycle))]
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
if skip_save_images is False:
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png",combine_frame)
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png", combine_frame)
self.idx = self.idx + 1
def inference(self,
audio_path,
out_vid_name,
fps,
skip_save_images):
os.makedirs(self.avatar_path+'/tmp',exist_ok =True)
def inference(self, audio_path, out_vid_name, fps, skip_save_images):
os.makedirs(self.avatar_path + '/tmp', exist_ok=True)
print("start inference")
############################################## extract audio feature ##############################################
start_time = time.time()
whisper_feature = audio_processor.audio2feat(audio_path)
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
# Extract audio features
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path, weight_dtype=weight_dtype)
whisper_chunks = audio_processor.get_whisper_chunk(
whisper_input_features,
device,
weight_dtype,
whisper,
librosa_length,
fps=fps,
audio_padding_length_left=args.audio_padding_length_left,
audio_padding_length_right=args.audio_padding_length_right,
)
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
############################################## inference batch by batch ##############################################
video_num = len(whisper_chunks)
video_num = len(whisper_chunks)
res_frame_queue = queue.Queue()
self.idx = 0
# # Create a sub-thread and start it
# Create a sub-thread and start it
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num, skip_save_images))
process_thread.start()
gen = datagen(whisper_chunks,
self.input_latent_list_cycle,
self.batch_size)
self.input_latent_list_cycle,
self.batch_size)
start_time = time.time()
res_frame_list = []
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/self.batch_size)))):
audio_feature_batch = torch.from_numpy(whisper_batch)
audio_feature_batch = audio_feature_batch.to(device=unet.device,
dtype=unet.model.dtype)
audio_feature_batch = pe(audio_feature_batch)
latent_batch = latent_batch.to(dtype=unet.model.dtype)
pred_latents = unet.model(latent_batch,
timesteps,
encoder_hidden_states=audio_feature_batch).sample
for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=int(np.ceil(float(video_num) / self.batch_size)))):
audio_feature_batch = pe(whisper_batch.to(device))
latent_batch = latent_batch.to(device=device, dtype=unet.model.dtype)
pred_latents = unet.model(latent_batch,
timesteps,
encoder_hidden_states=audio_feature_batch).sample
pred_latents = pred_latents.to(device=device, dtype=vae.vae.dtype)
recon = vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_queue.put(res_frame)
# Close the queue and sub-thread after all tasks are completed
process_thread.join()
if args.skip_save_images is True:
print('Total process time of {} frames without saving images = {}s'.format(
video_num,
time.time()-start_time))
video_num,
time.time() - start_time))
else:
print('Total process time of {} frames including saving images = {}s'.format(
video_num,
time.time()-start_time))
video_num,
time.time() - start_time))
if out_vid_name is not None and args.skip_save_images is False:
if out_vid_name is not None and args.skip_save_images is False:
# optional
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
print(cmd_img2video)
os.system(cmd_img2video)
output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on
output_vid = os.path.join(self.video_out_path, out_vid_name + ".mp4") # on
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}"
print(cmd_combine_audio)
os.system(cmd_combine_audio)
@@ -284,52 +296,95 @@ class Avatar:
shutil.rmtree(f"{self.avatar_path}/tmp")
print(f"result is save to {output_vid}")
print("\n")
if __name__ == "__main__":
'''
This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
'''
parser = argparse.ArgumentParser()
parser.add_argument("--inference_config",
type=str,
default="configs/inference/realtime.yaml",
)
parser.add_argument("--fps",
type=int,
default=25,
)
parser.add_argument("--batch_size",
type=int,
default=4,
)
parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Version of MuseTalk: v1 or v15")
parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable")
parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use")
parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model")
parser.add_argument("--unet_config", type=str, default="./models/musetalk/musetalk.json", help="Path to UNet configuration file")
parser.add_argument("--unet_model_path", type=str, default="./models/musetalk/pytorch_model.bin", help="Path to UNet model weights")
parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model")
parser.add_argument("--inference_config", type=str, default="configs/inference/realtime.yaml")
parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value")
parser.add_argument("--result_dir", default='./results', help="Directory for output results")
parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping")
parser.add_argument("--fps", type=int, default=25, help="Video frames per second")
parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio")
parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio")
parser.add_argument("--batch_size", type=int, default=25, help="Batch size for inference")
parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file")
parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time')
parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use')
parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode")
parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region")
parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region")
parser.add_argument("--skip_save_images",
action="store_true",
help="Whether skip saving images for better generation speed calculation",
)
action="store_true",
help="Whether skip saving images for better generation speed calculation",
)
args = parser.parse_args()
# Set computing device
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
# Load model weights
vae, unet, pe = load_all_model(
unet_model_path=args.unet_model_path,
vae_type=args.vae_type,
unet_config=args.unet_config,
device=device
)
timesteps = torch.tensor([0], device=device)
pe = pe.half().to(device)
vae.vae = vae.vae.half().to(device)
unet.model = unet.model.half().to(device)
# Initialize audio processor and Whisper model
audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir)
weight_dtype = unet.model.dtype
whisper = WhisperModel.from_pretrained(args.whisper_dir)
whisper = whisper.to(device=device, dtype=weight_dtype).eval()
whisper.requires_grad_(False)
# Initialize face parser with configurable parameters based on version
if args.version == "v15":
fp = FaceParsing(
left_cheek_width=args.left_cheek_width,
right_cheek_width=args.right_cheek_width
)
else: # v1
fp = FaceParsing()
inference_config = OmegaConf.load(args.inference_config)
print(inference_config)
for avatar_id in inference_config:
data_preparation = inference_config[avatar_id]["preparation"]
video_path = inference_config[avatar_id]["video_path"]
bbox_shift = inference_config[avatar_id]["bbox_shift"]
if args.version == "v15":
bbox_shift = 0
else:
bbox_shift = inference_config[avatar_id]["bbox_shift"]
avatar = Avatar(
avatar_id = avatar_id,
video_path = video_path,
bbox_shift = bbox_shift,
batch_size = args.batch_size,
preparation= data_preparation)
avatar_id=avatar_id,
video_path=video_path,
bbox_shift=bbox_shift,
batch_size=args.batch_size,
preparation=data_preparation)
audio_clips = inference_config[avatar_id]["audio_clips"]
for audio_num, audio_path in audio_clips.items():
print("Inferring using:",audio_path)
avatar.inference(audio_path,
audio_num,
args.fps,
args.skip_save_images)
print("Inferring using:", audio_path)
avatar.inference(audio_path,
audio_num,
args.fps,
args.skip_save_images)