mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
301 lines
10 KiB
Python
301 lines
10 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
#
|
|
# Copyright @2024 AI, ZHIHU Inc. (zhihu.com)
|
|
#
|
|
# @author: wangchongyi <wangchongyi@zhihu.com>
|
|
# @author: chenqianyu <cqy1195@zhihu.com>
|
|
# @date: 2024/5/06
|
|
#
|
|
|
|
import os
|
|
import math
|
|
import json
|
|
import copy
|
|
import logging
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from typing import Dict, Optional, List
|
|
from PIL import Image
|
|
|
|
|
|
from dataclasses import dataclass, field
|
|
from transformers import AutoTokenizer, AutoProcessor
|
|
from torch.utils.data import Dataset
|
|
|
|
|
|
class SupervisedDataset(Dataset):
|
|
"""Dataset for supervised fine-tuning."""
|
|
def __init__(self, raw_data, transform, tokenizer, slice_config):
|
|
super(SupervisedDataset, self).__init__()
|
|
self.raw_data = raw_data
|
|
self.tokenizer = tokenizer
|
|
self.transform = transform
|
|
self.slice_config = slice_config
|
|
|
|
def __len__(self):
|
|
return len(self.raw_data)
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
|
image = Image.open(self.raw_data[i]["image"]).convert("RGB")
|
|
ret = preprocess(image, self.raw_data[i]["conversations"], self.tokenizer, self.transform, slice_config=self.slice_config)
|
|
ret = dict(
|
|
input_ids=ret["input_ids"],
|
|
labels=ret["target"],
|
|
attention_mask=ret["input_ids"].ne(self.tokenizer.pad_token_id),
|
|
pixel_values=ret["pixel_values"],
|
|
image_bound=ret["image_bound"],
|
|
)
|
|
|
|
return ret
|
|
|
|
|
|
def data_collator(examples, padding_value=0):
|
|
input_ids = pad_sequence([example["input_ids"] for example in examples], batch_first=True, padding_value=padding_value)
|
|
targets = pad_sequence([example["labels"] for example in examples], batch_first=True, padding_value=padding_value)
|
|
attention_mask = pad_sequence([example["attention_mask"] for example in examples], batch_first=True, padding_value=padding_value)
|
|
pixel_values = [example["pixel_values"] for example in examples]
|
|
image_bound = [example["image_bound"] for example in examples]
|
|
return {"input_ids": input_ids, "labels":targets, "attention_mask": attention_mask, "image_bound": image_bound, "pixel_values": pixel_values}
|
|
|
|
|
|
def conversation_to_ids(conversation, tokenizer):
|
|
"""
|
|
for single image multi-turn conversation
|
|
conversation: [{'role': 'user', 'content': 'Describe this image'},
|
|
{'role': 'assistant', 'content': 'This is a cat.'}]
|
|
"""
|
|
raw_msg = ''
|
|
input_ids = []
|
|
context = []
|
|
for idx, msg in enumerate(conversation):
|
|
role = msg['role']
|
|
message = msg['content']
|
|
assert role in ['user', 'assistant']
|
|
if role == 'user':
|
|
prefix = '<用户>'
|
|
else:
|
|
prefix = '<AI>'
|
|
# append eos
|
|
if idx == len(conversation) - 1:
|
|
message = message + tokenizer.eos_token
|
|
prefix_ids = tokenizer.encode(prefix)[1:] # remove bos
|
|
message_ids = tokenizer.encode(message)[1:]
|
|
|
|
input_ids.append(prefix_ids)
|
|
input_ids.append(message_ids)
|
|
|
|
context.append(np.ones((len(prefix_ids),), dtype=np.int8))
|
|
if role == 'assistant':
|
|
context.append(np.zeros((len(message_ids),), dtype=np.int8))
|
|
else:
|
|
context.append(np.ones((len(message_ids),), dtype=np.int8))
|
|
|
|
raw_msg += (prefix + message)
|
|
|
|
ids = torch.from_numpy(np.hstack(input_ids, dtype=np.int32))
|
|
context = torch.from_numpy(np.hstack(context, dtype=np.int8))
|
|
|
|
# build target
|
|
target = torch.full_like(ids, -100, dtype=torch.int32)
|
|
for i in range(1, len(ids)):
|
|
if context[i] == 0:
|
|
target[i - 1] = ids[i]
|
|
if context[i] == 1 and context[i - 1] == 0:
|
|
target[i - 1] = tokenizer.eos_id
|
|
|
|
# build image bound
|
|
image_start_tokens = torch.where(ids == tokenizer.im_start_id)[0]
|
|
image_start_tokens += 1
|
|
image_end_tokens = torch.where(ids == tokenizer.im_end_id)[0]
|
|
if len(image_start_tokens) != len(image_end_tokens):
|
|
print('image start token != image end tokens')
|
|
if len(image_start_tokens)>0:
|
|
image_bound = torch.hstack([image_start_tokens.unsqueeze(-1), image_end_tokens.unsqueeze(-1)])
|
|
else:
|
|
image_bound = []
|
|
|
|
return {
|
|
'input_ids': ids,
|
|
'target': target,
|
|
'image_bound': image_bound,
|
|
'raw_msg': raw_msg,
|
|
}
|
|
|
|
|
|
def preprocess(image, conversation, tokenizer, transform, query_nums=64, slice_config=None):
|
|
"""
|
|
single image preprocess, the image will be placed at the top of the conversation
|
|
"""
|
|
conversation = copy.deepcopy(conversation)
|
|
assert len(conversation) > 1, "conversation length must large than 2"
|
|
assert conversation[0]['role'] == 'user', "the first role must be user"
|
|
|
|
if slice_config is not None:
|
|
assert isinstance(slice_config, Dict)
|
|
assert 'patch_size' in slice_config
|
|
assert 'max_slice_nums' in slice_config
|
|
assert 'scale_resolution' in slice_config
|
|
default_image_placeholder = tokenizer.im_start + tokenizer.unk_token * query_nums + tokenizer.im_end
|
|
if slice_config:
|
|
images = []
|
|
source_image, patches, best_grid = slice_image(
|
|
image, slice_config['max_slice_nums'], slice_config['scale_resolution'], slice_config['patch_size']
|
|
)
|
|
images.append(source_image)
|
|
image_placeholder = default_image_placeholder
|
|
if len(patches) > 0:
|
|
for i in range(len(patches)):
|
|
for j in range(len(patches[0])):
|
|
images.append(patches[i][j])
|
|
|
|
image_placeholder += get_grid_placeholder(
|
|
tokenizer, best_grid, query_nums
|
|
)
|
|
images = [transform(i) for i in images]
|
|
else:
|
|
images = [transform(image)]
|
|
image_placeholder = default_image_placeholder
|
|
if '<image>' in conversation[0]['content']:
|
|
conversation[0]['content'] = conversation[0]['content'].replace('<image>', image_placeholder)
|
|
else:
|
|
conversation[0]['content'] = image_placeholder + '\n' + conversation[0]['content']
|
|
|
|
input_dict = conversation_to_ids(conversation, tokenizer)
|
|
input_dict['pixel_values'] = images
|
|
return input_dict
|
|
|
|
|
|
|
|
def slice_image(
|
|
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
|
):
|
|
original_size = image.size
|
|
original_width, original_height = original_size
|
|
log_ratio = math.log(original_width / original_height)
|
|
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
|
multiple = min(math.ceil(ratio), max_slice_nums)
|
|
|
|
source_image = None
|
|
best_grid = None
|
|
patches = []
|
|
|
|
if multiple <= 1 or never_split:
|
|
# dont need to slice, upsample
|
|
best_size = find_best_resize(
|
|
original_size, scale_resolution, patch_size, allow_upscale=True
|
|
)
|
|
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
|
else:
|
|
candidate_split_grids_nums = []
|
|
for i in [multiple - 1, multiple, multiple + 1]:
|
|
if i == 1 or i > max_slice_nums:
|
|
continue
|
|
candidate_split_grids_nums.append(i)
|
|
|
|
# source image, down-sampling and ensure divided by patch_size
|
|
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
|
|
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
|
candidate_grids = []
|
|
|
|
# find best grid
|
|
for split_grids_nums in candidate_split_grids_nums:
|
|
m = 1
|
|
while m <= split_grids_nums:
|
|
if split_grids_nums % m == 0:
|
|
candidate_grids.append([m, split_grids_nums // m])
|
|
m += 1
|
|
|
|
best_grid = [1, 1]
|
|
min_error = float("inf")
|
|
for grid in candidate_grids:
|
|
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
|
if error < min_error:
|
|
best_grid = grid
|
|
min_error = error
|
|
|
|
refine_size = get_refine_size(
|
|
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
|
)
|
|
|
|
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
|
|
patches = split_to_patches(refine_image, best_grid)
|
|
|
|
return source_image, patches, best_grid
|
|
|
|
|
|
def ensure_divide(length, patch_size):
|
|
return max(round(length / patch_size) * patch_size, patch_size)
|
|
|
|
|
|
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
|
|
width, height = original_size
|
|
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
|
r = width / height
|
|
height = int(scale_resolution / math.sqrt(r))
|
|
width = int(height * r)
|
|
best_width = ensure_divide(width, patch_size)
|
|
best_height = ensure_divide(height, patch_size)
|
|
return (best_width, best_height)
|
|
|
|
|
|
def get_refine_size(
|
|
original_size, grid, scale_resolution, patch_size, allow_upscale=False
|
|
):
|
|
width, height = original_size
|
|
grid_x, grid_y = grid
|
|
|
|
refine_width = ensure_divide(width, grid_x)
|
|
refine_height = ensure_divide(height, grid_y)
|
|
|
|
grid_width = refine_width / grid_x
|
|
grid_height = refine_height / grid_y
|
|
|
|
best_grid_size = find_best_resize(
|
|
(grid_width, grid_height),
|
|
scale_resolution,
|
|
patch_size,
|
|
allow_upscale=allow_upscale,
|
|
)
|
|
|
|
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
|
|
|
return refine_size
|
|
|
|
|
|
def split_to_patches(image, grid):
|
|
patches = []
|
|
width, height = image.size
|
|
grid_x = int(width / grid[0])
|
|
grid_y = int(height / grid[1])
|
|
|
|
for i in range(0, height, grid_y):
|
|
images = []
|
|
for j in range(0, width, grid_x):
|
|
box = (j, i, j + grid_x, i + grid_y)
|
|
patch = image.crop(box)
|
|
images.append(patch)
|
|
patches.append(images)
|
|
|
|
return patches
|
|
|
|
|
|
def get_grid_placeholder(tokenizer, grid, query_num):
|
|
image_placeholder = (
|
|
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
|
|
)
|
|
|
|
cols = grid[0]
|
|
rows = grid[1]
|
|
slices = []
|
|
for i in range(rows):
|
|
lines = []
|
|
for j in range(cols):
|
|
lines.append(image_placeholder)
|
|
slices.append("".join(lines))
|
|
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
|
|
return slice_placeholder
|
|
|