mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
284 lines
12 KiB
Python
284 lines
12 KiB
Python
from huggingface_hub import snapshot_download
|
|
from ..smp import *
|
|
from .video_base import VideoBaseDataset
|
|
from .utils import build_judge, DEBUG_MESSAGE
|
|
|
|
FAIL_MSG = 'Failed to obtain answer via API.'
|
|
|
|
|
|
def unwrap_hf_pkl(pth, suffix='.mp4'):
|
|
base_dir = os.path.join(pth, 'video_pkl/')
|
|
target_dir = os.path.join(pth, 'video/')
|
|
pickle_files = [os.path.join(base_dir, file) for file in os.listdir(base_dir)]
|
|
pickle_files.sort()
|
|
|
|
if not os.path.exists(target_dir):
|
|
os.makedirs(target_dir, exist_ok=True)
|
|
for pickle_file in pickle_files:
|
|
with open(pickle_file, 'rb') as file:
|
|
video_data = pickle.load(file)
|
|
# For each video file in the pickle file, write its contents to a new mp4 file
|
|
for video_name, video_content in video_data.items():
|
|
output_path = os.path.join(target_dir, f'{video_name}{suffix}')
|
|
with open(output_path, 'wb') as output_file:
|
|
output_file.write(video_content)
|
|
print('The video file has been restored and stored from the pickle file.')
|
|
else:
|
|
print('The video file already exists.')
|
|
|
|
|
|
class VideoMME(VideoBaseDataset):
|
|
|
|
MD5 = '85bdd91f9b29a99354c23b97ab7c113c'
|
|
SYS = ''
|
|
|
|
FRAMES_TMPL_NOSUB = """
|
|
These are the frames of a video. \
|
|
Select the best answer to the following multiple-choice question based on the video. \
|
|
Respond with only the letter (A, B, C, or D) of the correct option.
|
|
"""
|
|
|
|
FRAMES_TMPL_SUB = """
|
|
These are the frames of a video. \
|
|
This video's subtitles are listed below:
|
|
{}
|
|
Select the best answer to the following multiple-choice question based on the video. \
|
|
Respond with only the letter (A, B, C, or D) of the correct option.
|
|
"""
|
|
|
|
TYPE = 'Video-MCQ'
|
|
|
|
def __init__(self, dataset='Video-MME', use_subtitle=False, nframe=0, fps=-1):
|
|
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
|
|
self.use_subtitle = use_subtitle
|
|
self.dataset_name = dataset
|
|
|
|
@classmethod
|
|
def supported_datasets(cls):
|
|
return ['Video-MME']
|
|
|
|
def prepare_dataset(self, dataset_name='Video-MME', repo_id='lmms-lab/Video-MME'):
|
|
|
|
def check_integrity(pth):
|
|
data_file = osp.join(pth, f'{dataset_name}.tsv')
|
|
|
|
if not os.path.exists(data_file):
|
|
return False
|
|
|
|
if md5(data_file) != self.MD5:
|
|
return False
|
|
data = load(data_file)
|
|
for video_pth in data['video_path']:
|
|
if not osp.exists(osp.join(pth, video_pth)):
|
|
return False
|
|
return True
|
|
|
|
cache_path = get_cache_path(repo_id)
|
|
if cache_path is not None and check_integrity(cache_path):
|
|
dataset_path = cache_path
|
|
else:
|
|
|
|
def unzip_hf_zip(pth):
|
|
import zipfile
|
|
base_dir = pth
|
|
target_dir = os.path.join(pth, 'video/')
|
|
zip_files = [
|
|
os.path.join(base_dir, file) for file in os.listdir(base_dir)
|
|
if file.endswith('.zip') and file.startswith('video')
|
|
]
|
|
zip_files.sort()
|
|
|
|
if not os.path.exists(target_dir):
|
|
os.makedirs(target_dir, exist_ok=True)
|
|
for zip_file in zip_files:
|
|
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
|
for member in zip_ref.namelist():
|
|
# Check if the member is a file (not a directory)
|
|
if not member.endswith('/'):
|
|
# Extract the file to the specified directory
|
|
source = zip_ref.open(member)
|
|
target = open(os.path.join(target_dir, os.path.basename(member)), 'wb')
|
|
with source, target:
|
|
target.write(source.read())
|
|
print('The video file has been restored and stored from the zip file.')
|
|
else:
|
|
print('The video file already exists.')
|
|
|
|
subtitle_zip_file = os.path.join(base_dir, 'subtitle.zip')
|
|
subtitle_target_dir = os.path.join(base_dir, 'subtitle')
|
|
|
|
if not os.path.exists(subtitle_target_dir):
|
|
os.makedirs(subtitle_target_dir, exist_ok=True)
|
|
with zipfile.ZipFile(subtitle_zip_file, 'r') as zip_ref:
|
|
for member in zip_ref.namelist():
|
|
# Check if the member is a file (not a directory)
|
|
if not member.endswith('/'):
|
|
# Extract the file to the specified directory
|
|
source = zip_ref.open(member)
|
|
target = open(os.path.join(subtitle_target_dir, os.path.basename(member)), 'wb')
|
|
with source, target:
|
|
target.write(source.read())
|
|
print('The subtitle file has been restored and stored from the zip file.')
|
|
else:
|
|
print('The subtitle file already exists.')
|
|
|
|
def generate_tsv(pth):
|
|
|
|
data_file = osp.join(pth, f'{dataset_name}.tsv')
|
|
if os.path.exists(data_file) and md5(data_file) == self.MD5:
|
|
return
|
|
|
|
data_file = pd.read_parquet(os.path.join(pth, 'videomme/test-00000-of-00001.parquet'))
|
|
data_file = data_file.assign(index=range(len(data_file)))
|
|
data_file['video'] = data_file['videoID']
|
|
data_file['video_path'] = data_file['videoID'].apply(lambda x: f'./video/{x}.mp4')
|
|
data_file['subtitle_path'] = data_file['videoID'].apply(lambda x: f'./subtitle/{x}.srt')
|
|
data_file['candidates'] = data_file['options'].apply(lambda x: x.tolist())
|
|
|
|
data_file = data_file[['index', 'video', 'video_path', 'duration', 'domain', 'candidates',
|
|
'sub_category', 'task_type', 'subtitle_path', 'question', 'answer']]
|
|
|
|
data_file.to_csv(osp.join(pth, f'{dataset_name}.tsv'), sep='\t', index=False)
|
|
|
|
if modelscope_flag_set():
|
|
from modelscope import dataset_snapshot_download
|
|
dataset_path = dataset_snapshot_download(dataset_id=repo_id)
|
|
else:
|
|
dataset_path = snapshot_download(repo_id=repo_id, repo_type='dataset')
|
|
unzip_hf_zip(dataset_path)
|
|
generate_tsv(dataset_path)
|
|
|
|
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
|
|
|
|
return dict(data_file=data_file, root=dataset_path)
|
|
|
|
def save_video_frames(self, video, video_llm=False):
|
|
|
|
vid_path = osp.join(self.data_root, 'video', video + '.mp4')
|
|
vid = decord.VideoReader(vid_path)
|
|
video_info = {
|
|
'fps': vid.get_avg_fps(),
|
|
'n_frames': len(vid),
|
|
}
|
|
if self.nframe > 0 and self.fps < 0:
|
|
step_size = len(vid) / (self.nframe + 1)
|
|
indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
|
|
frame_paths = self.frame_paths(video)
|
|
elif self.fps > 0:
|
|
# not constrained by num_frames, get frames by fps
|
|
total_duration = video_info['n_frames'] / video_info['fps']
|
|
required_frames = int(total_duration * self.fps)
|
|
step_size = video_info['fps'] / self.fps
|
|
indices = [int(i * step_size) for i in range(required_frames)]
|
|
frame_paths = self.frame_paths_fps(video, len(indices))
|
|
|
|
flag = np.all([osp.exists(p) for p in frame_paths])
|
|
|
|
if not flag:
|
|
images = [vid[i].asnumpy() for i in indices]
|
|
images = [Image.fromarray(arr) for arr in images]
|
|
for im, pth in zip(images, frame_paths):
|
|
if not osp.exists(pth) and not video_llm:
|
|
im.save(pth)
|
|
|
|
return frame_paths, indices, video_info
|
|
|
|
def build_prompt(self, line, video_llm):
|
|
if isinstance(line, int):
|
|
assert line < len(self)
|
|
line = self.data.iloc[line]
|
|
|
|
frames, indices, video_info = self.save_video_frames(line['video'], video_llm)
|
|
|
|
if self.use_subtitle and os.path.exists(osp.join(self.data_root, line['subtitle_path'])):
|
|
import pysubs2
|
|
subs = pysubs2.load(osp.join(self.data_root, line['subtitle_path']), encoding='utf-8')
|
|
subtitles = []
|
|
|
|
for seleced_frame_id in indices:
|
|
sub_text = ''
|
|
cur_time = pysubs2.make_time(fps=video_info['fps'], frames=seleced_frame_id)
|
|
for sub in subs:
|
|
if sub.start < cur_time and sub.end > cur_time:
|
|
sub_text = sub.text.replace('\\N', ' ')
|
|
break
|
|
if sub_text.strip():
|
|
subtitles.append(sub_text)
|
|
subtitles = '\n'.join(subtitles)
|
|
else:
|
|
subtitles = ''
|
|
|
|
message = [dict(type='text', value=self.SYS)]
|
|
if video_llm:
|
|
message.append(dict(type='video', value=osp.join(self.data_root, 'video', line['video'] + '.mp4')))
|
|
else:
|
|
for im in frames:
|
|
message.append(dict(type='image', value=im))
|
|
|
|
text_prompt = self.FRAMES_TMPL_NOSUB if not self.use_subtitle else self.FRAMES_TMPL_SUB.format(subtitles)
|
|
message.append(dict(type='text', value=text_prompt))
|
|
line['question'] += '\n' + '\n'.join(eval(line['candidates']))
|
|
prompt = 'Question: {}\nAnswer: '.format(line['question'])
|
|
message.append(dict(type='text', value=prompt))
|
|
return message
|
|
|
|
# It returns a dictionary
|
|
@classmethod
|
|
def evaluate(self, eval_file, **judge_kwargs):
|
|
from .utils.videomme import get_dimension_rating, extract_characters_regex, extract_option
|
|
|
|
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
|
|
|
|
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
|
|
tgt_file = eval_file.replace('.xlsx', '_rating.json')
|
|
score_file = eval_file.replace('.xlsx', '_score.xlsx')
|
|
|
|
if not osp.exists(score_file):
|
|
model = judge_kwargs.get('model', 'exact_matching')
|
|
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
|
|
|
|
if model == 'exact_matching':
|
|
model = None
|
|
elif gpt_key_set():
|
|
model = build_judge(**judge_kwargs)
|
|
if not model.working():
|
|
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
|
|
warnings.warn(DEBUG_MESSAGE)
|
|
model = None
|
|
else:
|
|
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
|
|
model = None
|
|
res = {} if not osp.exists(tmp_file) else load(tmp_file)
|
|
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
|
|
|
|
data = load(eval_file)
|
|
data_un = data[~pd.isna(data['prediction'])]
|
|
|
|
for idx in data['index']:
|
|
ans = data.loc[data['index'] == idx, 'answer'].values[0]
|
|
pred = str(data.loc[data['index'] == idx, 'prediction'].values[0])
|
|
|
|
if extract_characters_regex(pred) == '':
|
|
extract_pred = extract_option(
|
|
model,
|
|
data.loc[data['index'] == idx].to_dict(orient='records')[0],
|
|
'Video-MME'
|
|
)
|
|
data.loc[idx, 'score'] = int(extract_pred == ans)
|
|
else:
|
|
data.loc[idx, 'score'] = int(extract_characters_regex(pred) == ans)
|
|
|
|
rejected = [x for x in data['score'] if x == -1]
|
|
|
|
print(
|
|
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
|
|
f'failed to obtain the score for another {len(rejected)} questions. '
|
|
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
|
|
)
|
|
|
|
dump(data, score_file)
|
|
|
|
rating = get_dimension_rating(score_file)
|
|
dump(rating, tgt_file)
|
|
return rating
|