Files
MiniCPM-o/eval_mm/vlmevalkit/vlmeval/dataset/utils/longvideobench.py
2025-01-21 15:34:54 +08:00

81 lines
2.5 KiB
Python

from ...smp import *
from .multiple_choice import extract_answer_from_item
import numpy as np
import re
FAIL_MSG = 'Failed to obtain answer via API.'
DURATIONS = [15, 60, 600, 3600]
TASK_CATEGORIES = [
"S2E", "S2O", "S2A",
"E2O", "O2E", "T2E",
"T2O", "T2A", "E3E",
"O3O", "SSS", "SOS",
"SAA", "T3E", "T3O",
"TOS", "TAA"
]
def get_dimension_rating(data_path):
data = load(data_path)
print(data.iloc[0])
duration_rating = {k: {} for k in DURATIONS}
for duration in DURATIONS + ['overall']:
duration_rating[duration] = {
'overall': '',
'question_category': {k: [] for k in TASK_CATEGORIES}
}
for i in range(len(data)):
task_ctg = data.iloc[i]['question_category']
duration = data.iloc[i]['duration_group']
duration_rating[duration]['question_category'][task_ctg].append(data.iloc[i]['score'])
duration_rating['overall']['question_category'][task_ctg].append(data.iloc[i]['score'])
for duration in DURATIONS + ['overall']:
overall_res_dur = f'{np.mean([x for x in sum(duration_rating[duration]["question_category"].values(), []) if x >= 0]):.3f}' # noqa: E501
duration_rating[duration]['overall'] = overall_res_dur
for task_ctg in TASK_CATEGORIES:
task_res_dur = f'{np.mean([x for x in duration_rating[duration]["question_category"][task_ctg] if x >= 0]):.3f}' # noqa: E501
duration_rating[duration]['question_category'][task_ctg] = task_res_dur
return duration_rating
def extract_option(model, input_item, dataset_name):
options = input_item['question'].split('\n')[1:]
for id, option in enumerate(options):
option_id = chr(ord('A') + id) + '.'
if option.find(option_id) >= 0:
input_item[chr(ord('A') + id)] = option[option.find(option_id) + len(option_id):].strip('. \n')
return extract_answer_from_item(model, input_item, dataset_name)['opt']
def extract_characters_regex(s):
s = s.strip()
answer_prefixes = [
'The best answer is',
'The correct answer is',
'The answer is',
'The answer',
'The best option is'
'The correct option is',
'Best answer:'
'Best option:',
'Answer:',
'Option:',
]
for answer_prefix in answer_prefixes:
s = s.replace(answer_prefix, '')
if len(s.split()) > 10 and not re.search('[ABCDE]', s):
return ''
matches = re.search(r'[ABCDE]', s)
if matches is None:
return ''
return matches[0]