Files
MiniCPM-o/eval_mm/vlmevalkit/vlmeval/dataset/longvideobench.py
2025-01-21 15:34:54 +08:00

329 lines
12 KiB
Python

from huggingface_hub import snapshot_download
from ..smp import *
from .video_base import VideoBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from glob import glob
FAIL_MSG = 'Failed to obtain answer via API.'
def timestamp_to_seconds(timestamp):
# Split the timestamp into hours, minutes, and seconds
h, m, s = timestamp.split(":")
# Convert hours, minutes, and total seconds (including fractions) to float and compute total seconds
total_seconds = int(h) * 3600 + int(m) * 60 + float(s)
return total_seconds
def uniformly_subsample(lst, K):
n = len(lst)
if K >= n:
return lst
step = n / K
return [lst[int(i * step)] for i in range(K)]
def insert_subtitles_into_frames(
frames,
frame_timestamps,
subtitles,
starting_timestamp_for_subtitles,
duration,
):
interleaved_list = []
cur_i = 0
for subtitle in subtitles:
if "timestamp" in subtitle:
start, end = subtitle["timestamp"]
if not isinstance(end, float):
end = duration
start -= starting_timestamp_for_subtitles
end -= starting_timestamp_for_subtitles
subtitle_timestamp = (start + end) / 2
subtitle_text = subtitle["text"]
else:
start, end = subtitle["start"], subtitle["end"]
start = timestamp_to_seconds(start)
end = timestamp_to_seconds(end)
start -= starting_timestamp_for_subtitles
end -= starting_timestamp_for_subtitles
subtitle_timestamp = (start + end) / 2
subtitle_text = subtitle["line"]
for i, (frame, frame_timestamp) in enumerate(
zip(frames[cur_i:], frame_timestamps[cur_i:])
):
if frame_timestamp <= subtitle_timestamp:
# print("frame:", frame_timestamp)
interleaved_list.append({"type": "image", "value": frame})
cur_i += 1
else:
break
if end - start < 1:
end = subtitle_timestamp + 0.5
start = subtitle_timestamp - 0.5
covering_frames = False
for frame, frame_timestamp in zip(frames, frame_timestamps):
if frame_timestamp < end and frame_timestamp > start:
covering_frames = True
break
if covering_frames:
interleaved_list.append({"type": "text", "value": subtitle_text + "\n"})
else:
pass
for i, (frame, frame_timestamp) in enumerate(
zip(frames[cur_i:], frame_timestamps[cur_i:])
):
interleaved_list.append({"type": "image", "value": frame})
return interleaved_list
class LongVideoBench(VideoBaseDataset):
MD5 = '82905eae3a5ae7383c5a8ee9655e1ab9'
SYS = ''
TYPE = 'Video-MCQ'
def __init__(self, dataset='LongVideoBench', use_subtitle=False, nframe=0, fps=-1):
super().__init__(dataset=dataset, nframe=nframe, fps=fps)
self.use_subtitle = use_subtitle
self.dataset_name = dataset
@classmethod
def supported_datasets(cls):
return ['LongVideoBench']
def prepare_dataset(self, dataset_name='LongVideoBench', repo_id='longvideobench/LongVideoBench'):
def check_integrity(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if not osp.exists(data_file):
return False
if md5(data_file) != self.MD5:
print("md5 mismatch", md5(data_file), self.MD5)
return False
data = load(data_file)
for video_pth in data['video_path']:
if not osp.exists(osp.join(pth, video_pth)):
print(video_pth, "is not found")
return False
return True
if modelscope_flag_set():
repo_id = "AI-ModelScope/LongVideoBench"
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
else:
def generate_tsv(pth):
data_file = osp.join(pth, f'{dataset_name}.tsv')
if osp.exists(data_file) and md5(data_file) == self.MD5:
return
data_file = pd.read_json(osp.join(pth, 'lvb_val.json'))
data_file = data_file.assign(index=range(len(data_file)))
data_file['video'] = data_file['video_id']
data_file['video_path'] = data_file['video_path'].apply(lambda x: f'./videos/{x}')
data_file.to_csv(osp.join(pth, f'{dataset_name}.tsv'), sep='\t', index=False)
if modelscope_flag_set():
from modelscope import dataset_snapshot_download
dataset_snapshot_download(dataset_id=repo_id)
else:
snapshot_download(repo_id=repo_id, repo_type='dataset')
print("All videos are downloaded for LongVideoBench")
if not glob(osp.join(cache_path, "videos")):
tar_files = glob(osp.join(cache_path, "**/*.tar*"), recursive=True)
def untar_video_data(tar_file, cache_dir):
import tarfile
with tarfile.open(tar_file, "r") as tar_ref:
tar_ref.extractall(cache_dir)
print(f"Extracted all files from {tar_file} to {cache_dir}")
def concat_tar_parts(tar_parts, output_tar):
with open(output_tar, "wb") as out_tar:
from tqdm import tqdm
for part in tqdm(sorted(tar_parts)):
with open(part, "rb") as part_file:
out_tar.write(part_file.read())
print(f"Concatenated parts {tar_parts} into {output_tar}")
tar_parts_dict = {}
# Group tar parts together
for tar_file in tar_files:
base_name = tar_file.split(".tar")[0]
if base_name not in tar_parts_dict:
tar_parts_dict[base_name] = []
tar_parts_dict[base_name].append(tar_file)
# Concatenate and untar split parts
for base_name, parts in tar_parts_dict.items():
print(f"Extracting following tar files: {parts}")
output_tar = base_name + ".tar"
if not osp.exists(output_tar):
print('Start concatenating tar files')
concat_tar_parts(parts, output_tar)
print('Finish concatenating tar files')
if not osp.exists(osp.join(cache_path, osp.basename(base_name))):
untar_video_data(output_tar, cache_path)
print('All videos are extracted for LongVideoBench')
dataset_path = cache_path
generate_tsv(dataset_path)
data_file = osp.join(dataset_path, f'{dataset_name}.tsv')
return dict(data_file=data_file, root=dataset_path)
def save_video_frames(self, video_path, video_llm=False):
vid_path = osp.join(self.data_root, video_path)
vid = decord.VideoReader(vid_path)
video_info = {
'fps': vid.get_avg_fps(),
'n_frames': len(vid),
}
if self.nframe > 0 and self.fps < 0:
step_size = len(vid) / (self.nframe + 1)
indices = [int(i * step_size) for i in range(1, self.nframe + 1)]
frame_paths = self.frame_paths(video_path[:-4])
elif self.fps > 0:
# not constrained by num_frames, get frames by fps
total_duration = video_info['n_frames'] / video_info['fps']
required_frames = int(total_duration * self.fps)
step_size = video_info['fps'] / self.fps
indices = [int(i * step_size) for i in range(required_frames)]
frame_paths = self.frame_paths_fps(video_path[:-4], len(indices))
flag = np.all([osp.exists(p) for p in frame_paths])
if not flag:
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
if not osp.exists(pth) and not video_llm:
im.save(pth)
return frame_paths, indices, video_info
# def save_video_into_images(self, line, num_frames=8):
# frame_paths, indices, video_info = self.save_video_frames(line['video_path'], num_frames)
# return frame_paths
def build_prompt(self, line, video_llm):
if isinstance(line, int):
assert line < len(self)
line = self.data.iloc[line]
frames, indices, video_info = self.save_video_frames(line['video_path'], video_llm)
fps = video_info["fps"]
message = [dict(type='text', value=self.SYS)]
if video_llm:
message.append(dict(type='video', value=osp.join(self.data_root, line['video_path'])))
else:
if not self.use_subtitle:
with open(osp.join(self.data_root, "subtitles", line["subtitle_path"])) as f:
subtitles = json.load(f)
frame_message = insert_subtitles_into_frames(
frames,
[ind_ / fps for ind_ in indices],
subtitles,
line["starting_timestamp_for_subtitles"],
line["duration"]
)
message += frame_message
else:
for im in frames:
message.append(dict(type='image', value=im))
line['question'] += '\n' + '\n'.join(
["{}. {}".format(chr(ord("A") + i), cand) for i, cand in enumerate(eval(line['candidates']))]
)
prompt = line["question"] + "\nAnswer with the option's letter from the given choices directly."
message.append(dict(type='text', value=prompt))
return message
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.longvideobench import get_dimension_rating, extract_characters_regex, extract_option
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'correct_choice'].values[0]
ans = chr(ord("A") + ans)
pred = str(data.loc[data['index'] == idx, 'prediction'].values[0])
if extract_characters_regex(pred) == '':
extract_pred = extract_option(
model,
data.loc[data['index'] == idx].to_dict(orient='records')[0],
'LongVideoBench'
)
data.loc[idx, 'score'] = int(extract_pred == ans)
else:
data.loc[idx, 'score'] = int(extract_characters_regex(pred) == ans)
rejected = [x for x in data['score'] if x == -1]
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {len(rejected)} questions. '
f'Those questions will be counted as -1 score in ALL rating, and will not be counted in VALID rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating