Files
MiniCPM-o/eval_mm/vlmevalkit/vlmeval/dataset/image_mcq.py
2025-01-21 15:34:54 +08:00

905 lines
40 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import warnings
from .image_base import ImageBaseDataset
from .utils import build_judge, DEBUG_MESSAGE
from ..smp import *
import pandas as pd
MMMB_URLS = {
'MMMB_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ar.tsv',
'MMMB_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_cn.tsv',
'MMMB_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_en.tsv',
'MMMB_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_pt.tsv',
'MMMB_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_ru.tsv',
'MMMB_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmmb/mmmb_tr.tsv',
}
MTL_MMBench_URLS = {
'MMBench_dev_ar': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ar.tsv',
'MMBench_dev_cn': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_cn.tsv',
'MMBench_dev_en': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_en.tsv',
'MMBench_dev_pt': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_pt.tsv',
'MMBench_dev_tr': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_tr.tsv',
'MMBench_dev_ru': 'https://huggingface.co/datasets/AIDC-AI/Parrot-dataset/resolve/main/mmbench/mmbench_dev_ru.tsv',
}
MMMB_MD5 = {
'MMMB_ar': 'f3a18b6385f1d9701840aa42de27aead', 'MMMB_cn': '13ed82fa89730037292fcaa27f08f430',
'MMMB_en': '1cd781a71ec5a2983c090b84105d6a01', 'MMMB_pt': '548ea2b3bb2da991790386f0015d30d1',
'MMMB_ru': 'ce1cc8a0533425ab0d86b326ebfc2984', 'MMMB_tr': '0733739d43090327975294292bc5cd67'
}
MTL_MMBench_MD5 = {
'MMBench_dev_ar': '4271b4a0d0200e1a86380a878e0d64a4', 'MMBench_dev_cn': '2ed5135326fed02c8e51ea50dda8222f',
'MMBench_dev_en': 'd9ab776fc018b3d45785e9a5c23431c2', 'MMBench_dev_pt': '4ddfbcd27ef12444b908c03831cd0295',
'MMBench_dev_tr': '4fab39d501389d3d6cc90264bb708f11', 'MMBench_dev_ru': '5ba1171ff2e68f80637bf78349e402a5'
}
class ImageMCQDataset(ImageBaseDataset):
TYPE = 'MCQ'
DATASET_URL = {
# MMBench v1.0
'MMBench_DEV_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN.tsv',
'MMBench_TEST_EN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN.tsv',
'MMBench_DEV_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN.tsv',
'MMBench_TEST_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN.tsv',
'MMBench': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench.tsv', # Internal
'MMBench_CN': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN.tsv', # Internal
# MMBench v1.1
'MMBench_DEV_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_EN_V11.tsv',
'MMBench_TEST_EN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_EN_V11.tsv',
'MMBench_DEV_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_DEV_CN_V11.tsv',
'MMBench_TEST_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_TEST_CN_V11.tsv',
'MMBench_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_V11.tsv', # Internal
'MMBench_CN_V11': 'https://opencompass.openxlab.space/utils/benchmarks/MMBench/MMBench_CN_V11.tsv', # Internal
# SEEDBench Series
'SEEDBench_IMG': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench_IMG.tsv',
'SEEDBench2': 'https://huggingface.co/datasets/VLMEval/SEEDBench2/resolve/main/SEEDBench2.tsv',
'SEEDBench2_Plus': 'https://opencompass.openxlab.space/utils/benchmarks/SEEDBench/SEEDBench2_Plus.tsv',
# ScienceQA Series
'ScienceQA_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_VAL.tsv',
'ScienceQA_TEST': 'https://opencompass.openxlab.space/utils/benchmarks/ScienceQA/ScienceQA_TEST.tsv',
# MMT-Bench
'MMT-Bench_ALL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL_MI.tsv',
'MMT-Bench_ALL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_ALL.tsv',
'MMT-Bench_VAL_MI': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL_MI.tsv',
'MMT-Bench_VAL': 'https://opencompass.openxlab.space/utils/benchmarks/MMT-Bench/MMT-Bench_VAL.tsv',
# AesBench
'AesBench_VAL': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_VAL.tsv',
'AesBench_TEST': 'https://huggingface.co/datasets/VLMEval/AesBench/resolve/main/AesBench_TEST.tsv',
# Q-Bench1
'Q-Bench1_VAL': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_VAL.tsv',
'Q-Bench1_TEST': 'https://huggingface.co/datasets/zhangzicheng/qbench_tsv/resolve/main/Q-Bench1_TEST.tsv',
# A-Bench
'A-Bench_VAL': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_VAL.tsv',
'A-Bench_TEST': 'https://huggingface.co/datasets/zhangzicheng/abench_tsv/resolve/main/A-bench_TEST.tsv',
# R-Bench
'R-Bench-Dis': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-dis.tsv',
'R-Bench-Ref': 'https://huggingface.co/datasets/lcysyzxdxc/R-Bench/blob/main/R-bench-ref.tsv',
# Other Benchmarks
'CCBench': 'https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv',
'AI2D_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.tsv',
'AI2D_TEST_NO_MASK': 'https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST_NO_MASK.tsv',
'MMStar': 'https://opencompass.openxlab.space/utils/VLMEval/MMStar.tsv',
'RealWorldQA': 'https://opencompass.openxlab.space/utils/VLMEval/RealWorldQA.tsv',
'MLLMGuard_DS': 'https://opencompass.openxlab.space/utils/VLMEval/MLLMGuard_DS.tsv',
'BLINK': 'https://opencompass.openxlab.space/utils/VLMEval/BLINK.tsv',
'TaskMeAnything_v1_imageqa_random': (
'https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-random/'
'resolve/main/TaskMeAnything-v1-imageqa-random.tsv'
),
'A-OKVQA': 'https://huggingface.co/datasets/Allen8/A-OKVQA/resolve/main/a-okvqa.tsv',
'WorldMedQA-V': 'https://opencompass.openxlab.space/utils/VLMEval/WorldMedQA-V.tsv',
'VisOnlyQA-VLMEvalKit': (
'https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real/'
'resolve/main/visonlyqa_vlmevalkit.tsv'
),
'3DSRBench': (
'https://huggingface.co/datasets/ccvl/3DSRBench/'
'resolve/main/3dsrbench_v1_vlmevalkit_circular.tsv'
),
}
DATASET_MD5 = {
# MMBench v1.0
'MMBench_DEV_EN': 'b6caf1133a01c6bb705cf753bb527ed8',
'MMBench_TEST_EN': '6939fadb0ce626fefc0bdc9c64efc528',
'MMBench_DEV_CN': '08b8fc3324a5ed74155350f57be69fbd',
'MMBench_TEST_CN': '7e1239baf0ee4c8b513e19705a0f317e',
'MMBench': '4115aea3383f3dd0083be6a633e0f820', # Internal Only
'MMBench_CN': '2e053ffc90ea598b1feae13c36dc13ee', # Internal Only
# MMBench v1.1
'MMBench_DEV_EN_V11': '30c05be8f2f347a50be25aa067248184',
'MMBench_TEST_EN_V11': '26f0f15381a21720255091d3e0316ce6',
'MMBench_DEV_CN_V11': '593f9b5f6bea453d870a798b34ae4f37',
'MMBench_TEST_CN_V11': '74bbe4556dac745613c7cbe5ad787050',
'MMBench_V11': 'b9276414f57af1308dcc4d0cd9b42e7c', # Internal Only
'MMBench_CN_V11': '95f6980dd1b4de38e3cbffe0305a3f25', # Internal Only
# SEEDBench
'SEEDBench_IMG': '68017231464752261a2526d6ca3a10c0',
'SEEDBench2': '4ec15cf864c4f16274112284f531813e',
'SEEDBench2_Plus': 'e32d3216dc4f452b0fe497a52015d1fd',
# ScienceQA
'ScienceQA_VAL': '96320d05e142e585e7204e72affd29f3',
'ScienceQA_TEST': 'e42e9e00f9c59a80d8a5db35bc32b71f',
# MMT-Bench
'MMT-Bench_ALL_MI': '5272157097e19cdd7cb41e412ab3b7c7',
'MMT-Bench_ALL': 'b273a2f4c596fe4f2605de0494cd632f',
'MMT-Bench_VAL_MI': 'c7d7b998eb5cd9aa36c7d4f721472462',
'MMT-Bench_VAL': '8dd4b730f53dbf9c3aed90ca31c928e0',
# AesBench
'AesBench_VAL': '3edb0c319e9187aa0b97fe7a11700a8c',
'AesBench_TEST': '58b1f7ba2cc32e1d68896d6ee716bbf8',
# Q-Bench1
'Q-Bench1_VAL': '837bdb6cd2da571713543462815187b7',
'Q-Bench1_TEST': '15e759bfd58c9d5f30b23a317d347153',
# A-Bench
'A-Bench_VAL': '218563ec50d34bb336c814143a5bb9c1',
'A-Bench_TEST': '567013fb033a20cf23f51d8e865bd16c',
# R-Bench
'R-Bench-Dis': 'd6e961dbfc43350688af2560226830b4',
'R-Bench-Ref': '270c1cb555acb523f3fdb178ed57021d',
# Other Benchmarks
'CCBench': 'f5dde47f24dc5a6fb6e595b409b466ac',
'AI2D_TEST': '0f593e0d1c7df9a3d69bf1f947e71975',
'AI2D_TEST_NO_MASK': 'fd8f463634d4fe9fbd23b876e8eea5be',
'MMStar': 'e1ecd2140806c1b1bbf54b43372efb9e',
'RealWorldQA': '4de008f55dc4fd008ca9e15321dc44b7',
'MLLMGuard_DS': '975fc0dd7119386e198c37d71e274b3f',
'BLINK': '3b6649b6a662184ea046908e5506260e',
'TaskMeAnything_v1_imageqa_random': '023fef69e2ca21827afb77c5ec3bc889',
'WorldMedQA-V': '441e63875e30c87f5750528b57b41285',
"VisOnlyQA-VLMEvalKit": 'cf460a31d2acb8d3a7cecd0e69298bfa',
'3DSRBench': '13a99f33164dc1b9faf0e8b8b01fd6f2',
}
DATASET_URL.update(MMMB_URLS)
DATASET_URL.update(MTL_MMBench_URLS)
DATASET_MD5.update(MMMB_MD5)
DATASET_MD5.update(MTL_MMBench_MD5)
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
options_prompt = 'Options:\n'
for key, item in options.items():
options_prompt += f'{key}. {item}\n'
hint = line['hint'] if ('hint' in line and not pd.isna(line['hint'])) else None
prompt = ''
if hint is not None:
prompt += f'Hint: {hint}\n'
prompt += f'Question: {question}\n'
if len(options):
prompt += options_prompt
prompt += 'Please select the correct answer from the options above. \n'
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, report_acc_MMT, mcq_circular_eval, mcq_vanilla_eval
# assert dataset is not None
dataset_map = {
'MMBench_TEST_EN': 'MMBench', 'MMBench_TEST_EN_V11': 'MMBench_V11',
'MMBench_TEST_CN': 'MMBench_CN', 'MMBench_TEST_CN_V11': 'MMBench_CN_V11'
}
dataset = self.dataset_name
if dataset in dataset_map:
dataset = dataset_map[dataset]
nproc = judge_kwargs.pop('nproc', 4)
circular = False
if listinstr(['mmbench', 'ccbench'], dataset.lower()):
data = load(eval_file)
data['index'] = [int(x) for x in data['index']]
dump(data, eval_file)
circular = True
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
if circular:
data = mcq_circular_eval(model, data, meta, nproc, result_file, self.dataset_name)
else:
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
# May have different report acc functions for different datasets
if 'MMT' in dataset:
acc = report_acc_MMT(data)
else:
acc = report_acc(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
if dataset == 'AesBench_VAL':
warnings.warn('Note that AesBench VAL is just a toy version of AesBench TEST. For full results, \
please evaluate on AesBench TEST. The AesBench TEST dataset is more than 20 times \
larger than the VAL dataset and the leaderboard results are based on AesBench TEST.')
if dataset == 'VisOnlyQA-VLMEvalKit':
warnings.warn('Note that the results on VisOnlyQA-VLMEvalKit are different from the results on \
the original VisOnlyQA. VisOnlyQA-VLMEvalKit does not include the \
chemistry__shape_multi split and uses a different evaluation prompt. Please \
explicitly specify the version of the dataset when you report results.')
return acc
class MMMUDataset(ImageMCQDataset):
DATASET_URL = {
'MMMU_DEV_VAL': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.tsv',
'MMMU_TEST': 'https://opencompass.openxlab.space/utils/VLMEval/MMMU_TEST.tsv',
}
DATASET_MD5 = {
'MMMU_DEV_VAL': '585e8ad75e73f75dcad265dfd0417d64',
'MMMU_TEST': 'c19875d11a2d348d07e5eb4bdf33166d',
}
@staticmethod
def split_MMMU(msgs):
text, images = None, []
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None
text = s['value']
text_segs = text.split('<image ')
if len(text_segs) == 1:
return msgs
segs = [dict(type='text', value=text_segs[0])]
for i, seg in enumerate(text_segs):
if i == 0:
continue
assert istype(seg[0], int) and seg[1] == '>'
image_idx = int(seg[0]) - 1
segs.append(dict(type='image', value=images[image_idx]))
segs.append(dict(type='text', value=seg[2:]))
return segs
def build_prompt(self, line):
msgs = super().build_prompt(line)
msgs = self.split_MMMU(msgs)
return msgs
class MUIRDataset(ImageMCQDataset):
DATASET_URL = {
'MUIRBench': 'http://opencompass.openxxlab.com/utils/VLMEval/MUIRBench.tsv'
}
DATASET_MD5 = {
'MUIRBench': '2e5e6fd7699761b08a7cb3ab8c0c2ec8'
}
@staticmethod
def split_MUIR(msgs):
text, images = None, []
# Separate images and text from msgs
for s in msgs:
if s['type'] == 'image':
images.append(s['value'])
elif s['type'] == 'text':
assert text is None # Ensure only one text entry is expected
text = s['value']
# Split text by <image> tags
text_segs = text.split('<image>')
# Initialize the segments list
segs = []
# Iterate through the text segments and images
for i, seg in enumerate(text_segs):
# Append the image if this is not the first segment and there are still images left
if i > 0 and i - 1 < len(images):
segs.append(dict(type='image', value=images[i - 1]))
# Append the text segment (if it's non-empty)
if len(seg) > 0:
segs.append(dict(type='text', value=seg))
return segs
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
options = {
cand: line[cand]
for cand in string.ascii_uppercase
if cand in line and not pd.isna(line[cand])
}
# options_prompt = ''
options_prompt = '\n'.join([f'{key}. {item}' for key, item in options.items()])
# for key, item in options.items():
# options_prompt += f'{key}. {item}\n'
prompt = ''
prompt += f'{question}\n'
if len(options):
prompt += options_prompt
prompt += "\nAnswer with the option's letter from the given choices directly."
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
msgs = self.split_MUIR(msgs)
return msgs
class GMAIMMBenchDataset(ImageMCQDataset):
DATASET_URL = {
'GMAI-MMBench_VAL': 'https://huggingface.co/datasets/VLMEval/GMAI-MMBench/resolve/main/GMAI-MMBench_VAL.tsv',
'GMAI_mm_bench_TEST_part_1': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_1.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_2': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_2.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_3': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_3.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_4': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_4.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_5': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_5.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_6': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_6.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_7': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_7.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_8': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_8.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_9': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_9.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_10': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_10.tsv', # noqa: E501
'GMAI_mm_bench_TEST_part_11': 'https://huggingface.co/datasets/OpenGVLab/GMAI-MMBench/resolve/main/GMAI_mm_bench_TEST_part_11.tsv', # noqa: E501
}
DATASET_MD5 = {
'GMAI-MMBench_VAL': '254bd581627866f1c499d3d6b4422324',
'GMAI_mm_bench_TEST_part_1': '900d735231230a63f4ed45665c078ef4',
'GMAI_mm_bench_TEST_part_2': '1b27ab621386945d7e4a765ad2d22b0e',
'GMAI_mm_bench_TEST_part_3': '44bdc2b6267dd505d529b8cad06f0fb2',
'GMAI_mm_bench_TEST_part_4': '5a04a04fcac9f1466709f242fdb80acb',
'GMAI_mm_bench_TEST_part_5': 'c70baf8909eda9af0ddeab275c721336',
'GMAI_mm_bench_TEST_part_6': '825abc39596b644dead9350d0cfa3b96',
'GMAI_mm_bench_TEST_part_7': 'defb8aed2fb77365a76b6b9abd6a2701',
'GMAI_mm_bench_TEST_part_8': 'ff490d60b85f2bb0abb67a435b298c65',
'GMAI_mm_bench_TEST_part_9': 'ff67c86f40da93b09139ac1d1ba5dc6b',
'GMAI_mm_bench_TEST_part_10': '3dae94627b9ac0fe00180d4780fbf6dc',
'GMAI_mm_bench_TEST_part_11': 'd08dc813f0eb6bbab63cae2a9d113c4b',
}
@classmethod
def supported_datasets(cls):
return ['GMAI-MMBench_VAL', 'GMAI-MMBench_TEST']
def load_data(self, dataset):
if dataset == 'GMAI-MMBench_VAL':
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
elif dataset == 'GMAI-MMBench_TEST':
dfs = []
for part_num in range(1, 12):
part_name = f'GMAI_mm_bench_TEST_part_{part_num}'
url = self.DATASET_URL[part_name]
file_md5 = self.DATASET_MD5.get(part_name)
tsv_path = osp.join(LMUDataRoot(), f'{part_name}.tsv')
if not osp.exists(tsv_path) or (file_md5 and md5(tsv_path) != file_md5):
download_file(url, filename=tsv_path)
local_path = tsv_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL'):
from ..tools import LOCALIZE
LOCALIZE(tsv_path, local_path)
tsv_path = local_path
# 加载数据
df = load(tsv_path)
dfs.append(df)
# 合并所有数据
data = pd.concat(dfs, ignore_index=True)
return data
else:
raise ValueError(f"未知的数据集:{dataset}")
def report_acc_by_groups(self, df, group_column):
res = defaultdict(list)
# Check for the 'split' column
if 'split' in df:
splits = list(set(df['split']))
res['split'] = splits
else:
df['split'] = ['none'] * len(df)
res['split'] = ['none']
res['Overall'] = [np.mean(df[df['split'] == sp]['hit']) for sp in res['split']]
if group_column not in df:
raise ValueError(f"Column '{group_column}' not found in dataframe.") # noqa: E713
abilities = list(set(df[group_column]))
abilities = ['None' if isinstance(ab, float) and pd.isna(ab) else ab for ab in abilities]
abilities.sort()
for ab in abilities:
ab_name = ab
sub_df = df[df[group_column] == ab]
res[ab_name] = [np.mean(sub_df[sub_df['split'] == sp]['hit']) for sp in res['split']]
return pd.DataFrame(res)
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import report_acc, mcq_vanilla_eval
nproc = judge_kwargs.pop('nproc', 4)
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'exact_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
# load split
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc(data)
for group_col in ['clinical vqa task', 'department', 'perceptual granularity']:
acc_grouped = self.report_acc_by_groups(data, group_col)
score_file_grouped = eval_file.replace(f'.{suffix}', f'_{group_col}_acc.csv')
dump(acc_grouped, score_file_grouped)
return acc
class MMERealWorld(ImageMCQDataset):
TYPE = 'MMERealWorld'
DATASET_MD5 = {
'MME-RealWorld': '271c33ec814c39533c467ec6fb8a6f36',
'MME-RealWorld-Lite': '4c17057d7d3b6c4a0d4397c3dae0881c',
'MME-RealWorld-CN': 'daaa763d52a760a38606d5dedb3fe444',
}
SYS = {
'MME-RealWorld': (
'Select the best answer to the above multiple-choice question based on the image. '
'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
'The best answer is:'
),
'MME-RealWorld-Lite': (
'Select the best answer to the above multiple-choice question based on the image. '
'Respond with only the letter (A, B, C, D, or E) of the correct option. \n'
'The best answer is:'
),
'MME-RealWorld-CN': (
'根据图像选择上述多项选择题的最佳答案。只需回答正确选项的字母A, B, C, D 或 E\n'
'最佳答案为:'
),
}
@classmethod
def supported_datasets(cls):
return ['MME-RealWorld', 'MME-RealWorld-CN', 'MME-RealWorld-Lite',]
def load_data(
self, dataset="MME-RealWorld", repo_id="yifanzhang114/MME-RealWorld-Base64"
):
def check_integrity(pth):
data_file = osp.join(pth, f"{dataset}.tsv")
if not os.path.exists(data_file):
return False
if md5(data_file) != self.DATASET_MD5[dataset]:
return False
return True
def generate_tsv(pth):
tsv_file = os.path.join(pth, f"{dataset}.tsv")
if os.path.exists(tsv_file):
print(f"{tsv_file} already exists.")
return
json_dir = os.path.join(pth, dataset)
json_files = [f for f in os.listdir(json_dir) if f.endswith(".json")]
data_list = []
for json_file in json_files:
with open(os.path.join(json_dir, json_file), "r") as f:
data = json.load(f)
for item in tqdm(data):
choice_prompt = (
"The choices are listed below:\n"
if dataset in ["MME-RealWorld", "MME-RealWorld-Lite"]
else "选项如下所示:\n"
)
data_list.append(
{
"index": item["index"],
"image": item["image"],
"question": item["question"],
"multi-choice options": choice_prompt
+ "\n".join(item["multi-choice options"]),
"A": item["multi-choice options"][0][4:],
"B": item["multi-choice options"][1][4:],
"C": item["multi-choice options"][2][4:],
"D": item["multi-choice options"][3][4:],
"E": item["multi-choice options"][4][4:],
"answer": item["answer"],
"category": item["category"],
"l2-category": item["l2-category"],
}
)
df = pd.DataFrame(data_list)
df.to_csv(tsv_file, sep="\t", index=False)
print(f"TSV file saved to {tsv_file}")
# Check if dataset is cached and has integrity
if dataset == "MME-RealWorld-Lite":
url = 'https://huggingface.co/datasets/yifanzhang114/MME-RealWorld-Base64/resolve/main/mme_realworld_lite.tsv' # noqa: E501
file_md5 = (
self.DATASET_MD5[dataset] if dataset in self.DATASET_MD5 else None
)
datas = self.prepare_tsv(url, file_md5)
choice_prompt = "The choices are listed below:\n"
for index, item in datas.iterrows():
options = eval(item["multi-choice options"])
datas.loc[index, "multi-choice options"] = choice_prompt + "\n".join(
options
)
datas.loc[index, "A"] = options[0][4:]
datas.loc[index, "B"] = options[1][4:]
datas.loc[index, "C"] = options[2][4:]
datas.loc[index, "D"] = options[3][4:]
datas.loc[index, "E"] = options[4][4:]
return datas
update_flag = False
cache_path = get_cache_path(repo_id)
if cache_path is not None and check_integrity(cache_path):
dataset_path = cache_path
print(f"Using cached dataset from {cache_path}")
else:
from huggingface_hub import snapshot_download
# Download or find the dataset path
dataset_path = snapshot_download(repo_id=repo_id, repo_type="dataset")
generate_tsv(dataset_path)
update_flag = True
data_path = os.path.join(dataset_path, f"{dataset}.tsv")
if file_size(data_path, "GB") > 1:
local_path = data_path.replace(".tsv", "_local.tsv")
if (
not osp.exists(local_path)
or os.environ.get("FORCE_LOCAL", None)
or update_flag
):
from vlmeval.tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
def post_build(self, dataset):
self.TYPE = 'MMERealWorld'
# Given one data record, return the built prompt (a multi-modal message), can override
def build_prompt(self, line):
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
choice_prompt = line['multi-choice options'] + '\n'
question += ' ' + choice_prompt + self.SYS[self.dataset_name]
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=question))
return msgs
# It returns a dictionary
@classmethod
def evaluate(self, eval_file, **judge_kwargs):
from .utils.multiple_choice import extract_characters_regex, get_dimension_rating
assert eval_file.endswith('.xlsx'), 'data file should be an xlsx file'
FAIL_MSG = 'Failed to obtain answer via API.'
tmp_file = eval_file.replace('.xlsx', '_tmp.pkl')
tgt_file = eval_file.replace('.xlsx', '_rating.json')
score_file = eval_file.replace('.xlsx', '_score.xlsx')
if not osp.exists(score_file):
res = {} if not osp.exists(tmp_file) else load(tmp_file)
res = {k: v for k, v in res.items() if FAIL_MSG not in v}
data = load(eval_file)
cnt_rejected = 0
data_un = data[~pd.isna(data['prediction'])]
for idx in data['index']:
ans = data.loc[data['index'] == idx, 'answer'].values[0]
pred = data.loc[data['index'] == idx, 'prediction'].values[0]
extract_pred = extract_characters_regex(pred)
if extract_pred == '':
cnt_rejected += 1
data.loc[data['index'] == idx, 'score'] = 0
else:
data.loc[data['index'] == idx, 'score'] = int(extract_pred == ans)
print(
f'Among {len(data)} questions, failed to obtain prediction for {len(data) - len(data_un)} questions, '
f'failed to obtain the score for another {cnt_rejected} questions. '
f'Those questions will be counted as 0 score in ALL rating.'
)
dump(data, score_file)
rating = get_dimension_rating(score_file)
dump(rating, tgt_file)
return rating
class HRBenchDataset(ImageMCQDataset):
DATASET_URL = {
'HRBench4K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_4k.tsv',
'HRBench8K': 'https://huggingface.co/datasets/DreamMr/HR-Bench/resolve/main/hr_bench_8k.tsv',
}
DATASET_MD5 = {
'HRBench4K': 'f6b041b03d49543494b8a56d2e35be65',
'HRBench8K': '274c9c7f89329b804a4723178a00219c',
}
def evaluate(self, eval_file, **judge_kwargs):
assert os.path.exists(eval_file), '{} does not exist!'.format(eval_file)
from .utils.multiple_choice import mcq_vanilla_eval
from .utils.hrbench import report_acc_hrbench
nproc = judge_kwargs.pop('nproc', 4)
suffix = eval_file.split('.')[-1]
model = judge_kwargs.get('model', 'extract_matching')
assert model in ['chatgpt-0125', 'exact_matching', 'gpt-4-0125']
name_str_map = {'chatgpt-0125': 'openai', 'gpt-4-0125': 'gpt4'}
name_str = name_str_map[model] if model in name_str_map else model
if model == 'exact_matching':
model = None
elif gpt_key_set():
model = build_judge(**judge_kwargs)
if not model.working():
warnings.warn('OPENAI API is not working properly, will use exact matching for evaluation')
warnings.warn(DEBUG_MESSAGE)
model = None
else:
warnings.warn('OPENAI_API_KEY is not set properly, will use exact matching for evaluation')
model = None
result_file = eval_file.replace(f'.{suffix}', f'_{name_str}_result.pkl')
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
# If not choice label, then use lower case
for k in data.keys():
data[k.lower() if k not in list(string.ascii_uppercase) else k] = data.pop(k)
meta = self.data
meta_q_map = {x: y for x, y in zip(meta['index'], meta['question'])}
data_map = {x: y for x, y in zip(data['index'], data['question'])}
for k in data_map:
assert k in meta_q_map, (
f'eval_file should be the same as or a subset of dataset {self.dataset_name}'
)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
if osp.exists(score_file):
acc = load(score_file)
return acc
data = mcq_vanilla_eval(model, data, meta, nproc, result_file, self.dataset_name)
dump(data, eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
data = load(eval_file.replace(f'.{suffix}', f'_{name_str}_result.{suffix}'))
acc = report_acc_hrbench(data)
score_file = eval_file.replace(f'.{suffix}', '_acc.csv')
dump(acc, score_file)
return acc
class CustomMCQDataset(ImageMCQDataset):
def load_data(self, dataset):
data_path = osp.join(LMUDataRoot(), f'{dataset}.tsv')
if file_size(data_path, 'GB') > 1:
local_path = data_path.replace('.tsv', '_local.tsv')
if not osp.exists(local_path) or os.environ.get('FORCE_LOCAL', None):
from ..tools import LOCALIZE
LOCALIZE(data_path, local_path)
data_path = local_path
return load(data_path)
class NaturalBenchDataset(ImageMCQDataset):
DATASET_URL = {
'NaturalBenchDataset': (
'https://huggingface.co/datasets/BaiqiL/'
'NaturalBench/resolve/main/NaturalBenchDataset.tsv'
),
}
DATASET_MD5 = {
'NaturalBenchDataset':'dbe25b044bc35696426381e9ba4fe930',
}
def build_prompt(self, line):
SUFFIX_FOR_VQA = {
"yes_no": "Please answer Yes or No.",
"multiple_choice": "Please output the letter corresponding to the correct option."
}
if isinstance(line, int):
line = self.data.iloc[line]
if self.meta_only:
tgt_path = toliststr(line['image_path'])
else:
tgt_path = self.dump_image(line)
question = line['question']
prompt = f'{question} {SUFFIX_FOR_VQA[line["type"]]}'
msgs = []
if isinstance(tgt_path, list):
msgs.extend([dict(type='image', value=p) for p in tgt_path])
else:
msgs = [dict(type='image', value=tgt_path)]
msgs.append(dict(type='text', value=prompt))
return msgs
def evaluate(self, eval_file, **judge_kwargs):
from .utils.naturalbench import extract_answer, get_scores
data = load(eval_file)
data = data.sort_values(by='index')
predictions = [str(x) for x in data['prediction']]
answers = [str(x) for x in data['answer']]
indexs = [str(x) for x in data['index']]
meta = self.data
types = [str(x) for x in meta['type']]
results = {}
assert len(predictions) == len(answers) == len(indexs) == len(types) == (1900 * 4)
number_answered_samples = len(predictions) // 4
for i in range(number_answered_samples):
results[i] = {
"q0_i0": extract_answer(predictions[i * 4], types[i * 4]),
"q0_i1": extract_answer(predictions[i * 4 + 1], types[i * 4 + 1]),
"q1_i0": extract_answer(predictions[i * 4 + 2], types[i * 4 + 2]),
"q1_i1": extract_answer(predictions[i * 4 + 3], types[i * 4 + 3])
}
scores = get_scores(results)
print(scores)
score_file = 'NaturalBench_acc.csv'
df = pd.DataFrame(list(scores.items()), columns=['Metric', 'Score'])
dump(df, score_file)
return scores